深度学习(一)-感知机+神经网络+激活函数
深度学习概述
深度学习的特点
- 优点
- 性能更好
- 不需要特征工程
- 在大数据样本下有更好的性能
- 能解决某些传统机器学习无法解决的问题
- 缺点
- 小数据样本下性能不如机器学习
- 模型复杂
- 可解释性弱
深度学习与传统机器学习相同点
- 目的相同:都是利用机器自我学习能力,解决软件系统的难题
- 基本问题相同:回归问题、分类问题、聚类问题
- 基本流程相同:数据准备 → 模型选择 → 模型构建/训练 → 评估优化 → 预测
- 问题领域相同:监督学习、非监督学习、半监督学习
- 应用领域相同:推荐、计算机视觉、自然语言处理、语音处理、强化学习
- 评价标准相同
- 回归问题:均方误差;R2值
- 分类问题:交叉熵;查准率、召回率、F1综合系数
- 模型泛化能力:过拟合、欠拟合

感知机
生物神经元
感知机
感知机功能
神经元作为回归器 / 分类器

逻辑和(线性分类)

逻辑或(线性分类)

感知机局限
多层感知机
神经网络
神经网络要足够深

多层神经网络计算公式

激活函数
定义

为什么使用激活函数
常见激活函数
阶跃函数
sigmoid函数
- 优点:平滑、易于求导
- 缺点:激活函数计算量大,反向传播求误差梯度时,求导涉及除法;反向传播时,很容易就 会出现梯度消失的情况,从而无法完成深层网络的训练

右侧是导数,x越来越大或者越来越小,导数逐渐为0,梯度逐步转换为0

tanh双曲正切函数
- 优点:平滑、易于求导;输出均值为0,收敛速度要比sigmoid快,从而可以减少迭代次数
- 缺点:梯度消失
- 用途:常用于NLP中

ReLU(Rectified Linear Units,修正线性单元)

- 优点:
- 缺点:小于等于0的部分梯度为0
- 用途:常用于图像
一般这里x<=0的时候都是给一个特别小的值,不至于让该神经元消失
Softmax

将预测结果转换为相对概率
在分类模型中,有几个类别,输出层就有几个神经元
分类模型的输出层激活函数一般都是softmax
总结
- 感知机:接收多个输入信号,产生一个输出信号,无法解决异或问题
- 多层感知机:将多个感知机组合
- 多层前馈网络:若干个感知机组合成若干层的网络,上一层输出作为下一层输入
- 激活函数:将计算结果转换为输出的值,包括阶跃函数、sigmoid、tanh、ReLU
相关文章:
深度学习(一)-感知机+神经网络+激活函数
深度学习概述 深度学习的特点 优点 性能更好 不需要特征工程 在大数据样本下有更好的性能 能解决某些传统机器学习无法解决的问题 缺点 小数据样本下性能不如机器学习 模型复杂 可解释性弱 深度学习与传统机器学习相同点 深度学习、机器学习是同一问题不同的解决方法 …...
目标检测-YOLOv4
YOLOv4介绍 YOLOv4 是 YOLO 系列的第四个版本,继承了 YOLOv3 的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比 YOLOv3,YOLOv4 在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检…...
一台笔记本电脑的硬件都有哪些以及对应的功能
一台笔记本电脑的硬件通常包括多个关键组件,这些组件共同协作,确保电脑的正常运行。以下是笔记本电脑的主要硬件及其功能: 1. 中央处理器(CPU) 功能:CPU 是电脑的“大脑”,负责处理所有的计算…...
【程序分享1】第一性原理计算 + 数据处理程序
【1】第一性原理计算 数据处理程序 SMATool 程序:VASP QE 零温 有限温度 拉伸、剪切、双轴、维氏硬度的计算 ElasTool v3.0 程序:材料弹性和机械性能的高效计算和可视化工具包 VELAS 程序:用于弹性各向异性可视化和分析 Phasego 程序…...
【数据结构】栈与队列OJ题(用队列实现栈)(用栈实现队列)
目录 1.用队列实现栈oj题 对比 一、初始化 二、出栈 三、入栈 四、取队头元素: 2.用栈实现队列 一、定义 二、入队列 三、出队列 四、队头 五、判空 前言:如果想了解什么是栈和队列请参考上一篇文章进来一起把【数据结构】的【栈与队列】狠…...
element-ui打包之后图标不显示,woff、ttf加载404
1、bug 起因 昨天在 vue 项目中编写 element-ui 的树形结构的表格,发现项目中无法生效,定位问题之后发现项目使用的 element-ui 的版本是 2.4.11 。看了官方最新版本是 2.15.14,然后得知 2.4.11 版本是不支持表格树形结构的。于是决定升级 el…...
探究零工市场小程序如何改变传统兼职模式
近年来,零工市场小程序正逐渐改变传统的兼职模式,为求职者和雇主提供了一个更为高效、便捷的平台。本文将深入探讨零工市场小程序如何影响传统兼职模式,以及它带来的优势和挑战。 一、背景与挑战 传统的兼职市场往往存在信息不对称的问题&am…...
MySQL数据库安装(详细)—>Mariadb的安装(day21)
该网盘链接有效期为7天,有需要评论区扣我: 通过网盘分享的文件:mariadb-10.3.7-winx64.msi 链接: https://pan.baidu.com/s/1-r_w3NuP8amhIEedmTkWsQ?pwd2ua7 提取码: 2ua7 1 双击打开安装软件 本次安装的是mariaDB,双击打开mar…...
微信小程序实践案例
参考视频: https://www.bilibili.com/video/BV1834y1676P/?p36&spm_id_frompageDriver&vd_sourceb604c19516c17da30b6b1abb6c4e7ec0 前期准备 1、新建三个页面 "pages": ["pages/home/home","pages/message/message",&quo…...
DataLoader使用
文章目录 一、认识dataloader二、DataLoader整合数据集三、使用DataLoader展示图片方法四、去除结尾不满足batch_size设值图片的展示 一、认识dataloader DataLoader 用于封装数据集,并提供批量加载数据的迭代器。它支持自动打乱数据、多线程数据加载等功能。datas…...
CSS学习11--版心和布局流程以及几种分布的例子
版心和布局流程 一、版心二、布局流程三、一列固定宽度且居中四、两列左窄右宽五、通栏平均分布型 一、版心 版心:是指网页主题内容所在的区域。一般在浏览器窗口水平居中位置,常见的宽度值为960px、980px、1000px、1200px等。 二、布局流程 为了提高…...
NetSuite AI 图生代码
去年的ChatGPT热潮期间,我们写过一篇文章说GTP辅助编程的事。 NetSuite GPT的辅助编程实践_如何打开netsuite: html script notes的视图-CSDN博客文章浏览阅读2.2k次,点赞4次,收藏3次。作为GPT综合症的一种表现,我们今朝来探究下…...
Java - BigDecimal计算中位数
日常开发中,如果使用数据库来直接查询一组数据的中位数,就比较简单,直接使用对应的函数就可以了,例如: SUBSTRING_INDEX(SUBSTRING_INDEX(GROUP_CONCAT(目标列名 ORDER BY 目标列名),,,Count(1)/2),,,-1) AS 目标列名_…...
Tensorflow2如何读取自制数据集并训练模型?-- Tensorflow自学笔记13
一. 如何自制数据集? 1. 目录结构 以下是自制数据集-手写数字集, 保存在目录 mnist_image_label 下 2. 数据存储格式 2.1. 目录mnist_train_jpeg_60000 下存放的是 60000张用于测试的手写数字 如 : 0_5.jpg, 表示编号为0,标签为5的图片 6_1.jpg, 表示…...
JVM系列(七) -对象的内存分配流程
一、摘要 在之前的文章中,我们介绍了类加载的过程、JVM 内存布局和对象的创建过程相关的知识。 本篇综合之前的知识,重点介绍一下对象的内存分配流程。 二、对象的内存分配原则 在之前的 JVM 内存结构布局的文章中,我们介绍到了 Java 堆的内存布局,由 年轻代 (Young Ge…...
Apache Ignite 在处理大规模数据时有哪些优势和局限性?
Apache Ignite 在处理大规模数据时的优势和局限性可以从以下几个方面进行分析: 优势 高性能:Ignite 利用内存计算的优势,实现了极高的读写性能,通过分布式架构,它可以将数据分散到多个节点上,从而实现了并…...
怎么利用NodeJS发送视频短信
随着5G时代的来临,企业的数字化转型步伐日益加快,视频短信作为新兴的数字营销工具,正逐步展现出其大的潜力。视频群发短信以其独特的形式和内容,将图片、文字、视频、声音融为一体,为用户带来全新的直观感受࿰…...
WebAPI(三)、 DOM 日期对象Date;获取事件戳;根据节点关系查找节点
文章目录 DOM1. 日期对象(1)、日期对象方法(2)、时间戳(3)、下课倒计时 2. 节点操作(1)、 查找节点(根据节点关系找)(2)、 增加节点:创建create、追加append、克隆clone(3)、 删除节点remove DOM 1. 日期对象 日期对象就是用来表示时间的对…...
012.Oracle-索引
我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈 入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈 虚 拟 环 境 搭 建 :👉&…...
SSL 证书 | 免费获取与自动续期全攻略
前言 随着互联网的不断发展,网站的安全性越来越受到人们的关注。 SSL证书 作为一种保障网站安全的重要手段,已经成为了许多网站的必备配置。 以前阿里云每个账号能生成二十个期限 1 年的免费 SSL 证书,一直用,还挺香࿰…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
国防科技大学计算机基础课程笔记02信息编码
1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制,因此这个了16进制的数据既可以翻译成为这个机器码,也可以翻译成为这个国标码,所以这个时候很容易会出现这个歧义的情况; 因此,我们的这个国…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
【算法训练营Day07】字符串part1
文章目录 反转字符串反转字符串II替换数字 反转字符串 题目链接:344. 反转字符串 双指针法,两个指针的元素直接调转即可 class Solution {public void reverseString(char[] s) {int head 0;int end s.length - 1;while(head < end) {char temp …...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...

