当前位置: 首页 > news >正文

目标检测-YOLOv6

YOLOv6

YOLOv6 是 YOLO 系列的一个新版本,相比 YOLOv5 进行了大量的优化与改进。YOLOv6 的设计目标是在提高模型检测精度的同时,进一步优化速度和效率,特别是在推理速度和部署便捷性方面。它采用了更先进的网络架构和优化技巧,在保持高性能的同时,极大地提升了推理速度。

相比 YOLOv5 的改进与优势

  1. 网络架构优化
    YOLOv6 引入了新的主干网络和特征金字塔结构,相比 YOLOv5 有显著改进。YOLOv6 使用 EfficientRep BackboneRep-PAN Neck,这些模块通过减少计算量和参数数量,大大提升了速度和效率。

  2. EfficientRep 主干
    YOLOv6 使用了 EfficientRep 作为主干网络,它是一种优化的卷积模块,基于 RepVGG 架构进行了进一步改进。相比 YOLOv5 的 CSPNet 结构,EfficientRep 通过引入更多的 skip connections(跳跃连接)和并行卷积操作,极大提高了模型的计算效率。

  3. Rep-PAN Neck
    YOLOv6 使用了 Rep-PAN,这是基于 PANet 的改进结构。Rep-PAN 通过使用 re-parameterization 技术,将训练时复杂的网络结构转换为推理时更高效的版本,从而在推理阶段提高速度。

  4. 任务自适应锚点自由检测
    YOLOv6 使用了锚点自由检测机制,这意味着模型不再依赖于预定义的锚点框,能够自动适应不同的目标大小,简化了训练和推理过程,并且提升了小目标的检测能力。

  5. 优化的损失函数
    YOLOv6 引入了新的 SIoU(Scaled Intersection over Union) 损失函数,进一步提升了边界框的回归性能,尤其是对目标位置、形状和大小更加敏感。相比于 YOLOv5 使用的 CIoU,SIoU 对目标的检测精度更高。

  6. 更快的推理速度
    YOLOv6 在推理速度上优于 YOLOv5,尤其是在移动设备和嵌入式设备上,得益于其轻量化的设计和高效的推理优化,使其更加适合实时应用场景。

核心代码展示

以下是 YOLOv6 中的一些关键代码模块展示,包括 EfficientRep 主干网络和 Rep-PAN 颈部网络的实现。

import torch
import torch.nn as nn# 1. 基础卷积模块,包含 Conv、BN 和 SiLU 激活函数
class ConvBlock(nn.Module):def __init__(self, in_channels, out_channels, kernel_size, stride, padding):super(ConvBlock, self).__init__()self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)self.bn = nn.BatchNorm2d(out_channels)self.activation = nn.SiLU()  # YOLOv6 继续使用 SiLU 激活函数def forward(self, x):return self.activation(self.bn(self.conv(x)))# 2. EfficientRep 模块,YOLOv6 主干网络的核心模块
class RepBlock(nn.Module):def __init__(self, in_channels, out_channels, stride=1):super(RepBlock, self).__init__()self.conv1 = ConvBlock(in_channels, out_channels, 3, stride, 1)  # 标准 3x3 卷积self.conv2 = ConvBlock(in_channels, out_channels, 1, stride, 0)  # 1x1 卷积提升通道数def forward(self, x):return self.conv1(x) + self.conv2(x)  # 将两种卷积操作的结果进行融合# 3. EfficientRep 主干网络定义
class EfficientRep(nn.Module):def __init__(self):super(EfficientRep, self).__init__()self.layer1 = RepBlock(3, 32, stride=2)self.layer2 = RepBlock(32, 64, stride=2)self.layer3 = RepBlock(64, 128, stride=2)self.layer4 = RepBlock(128, 256, stride=2)self.layer5 = RepBlock(256, 512, stride=2)def forward(self, x):x1 = self.layer1(x)  # 64x64 -> 32x32x2 = self.layer2(x1)  # 32x32 -> 16x16x3 = self.layer3(x2)  # 16x16 -> 8x8x4 = self.layer4(x3)  # 8x8 -> 4x4x5 = self.layer5(x4)  # 4x4 -> 2x2return x1, x2, x3, x4, x5# 4. Rep-PAN 模块
class RepPAN(nn.Module):def __init__(self):super(RepPAN, self).__init__()self.upsample = nn.Upsample(scale_factor=2, mode='nearest')self.reduce_layer1 = ConvBlock(512, 256, 1, 1, 0)  # 特征图尺寸缩减self.reduce_layer2 = ConvBlock(256, 128, 1, 1, 0)self.fpn_conv1 = ConvBlock(256, 256, 3, 1, 1)self.fpn_conv2 = ConvBlock(128, 128, 3, 1, 1)self.panet_conv1 = ConvBlock(128, 128, 3, 1, 1)self.panet_conv2 = ConvBlock(256, 256, 3, 1, 1)self.panet_conv3 = ConvBlock(512, 512, 3, 1, 1)def forward(self, x1, x2, x3, x4, x5):# 上采样x_up1 = self.upsample(self.reduce_layer1(x5)) + x4x_up2 = self.upsample(self.reduce_layer2(x_up1)) + x3# FPN 处理fpn_out1 = self.fpn_conv1(x_up1)fpn_out2 = self.fpn_conv2(x_up2)# PANet 下采样panet_out1 = self.panet_conv3(fpn_out1)panet_out2 = self.panet_conv2(fpn_out1)panet_out3 = self.panet_conv1(fpn_out2)return [panet_out1, panet_out2, panet_out3]# 5. YOLOv6 主网络
class YOLOv6(nn.Module):def __init__(self, num_classes):super(YOLOv6, self).__init__()self.backbone = EfficientRep()  # 主干网络self.neck = RepPAN()  # 颈部网络self.head = nn.ModuleList([YOLOHead(128, num_classes),YOLOHead(256, num_classes),YOLOHead(512, num_classes)])def forward(self, x):x1, x2, x3, x4, x5 = self.backbone(x)features = self.neck(x1, x2, x3, x4, x5)outputs = [self.head[i](feature) for i, feature in enumerate(features)]return outputs# 6. YOLOHead 预测头
class YOLOHead(nn.Module):def __init__(self, in_channels, num_classes):super(YOLOHead, self).__init__()self.conv = ConvBlock(in_channels, in_channels * 2, 3, 1, 1)self.pred = nn.Conv2d(in_channels * 2, 3 * (num_classes + 5), 1, 1, 0)def forward(self, x):return self.pred(self.conv(x))

代码解释

  1. EfficientRep 主干网络
    EfficientRep 是 YOLOv6 的核心改进,使用了更加高效的 RepBlock 模块,借鉴了 RepVGG 的 re-parameterization 技术。它在训练时采用多个不同的卷积路径进行融合,但在推理阶段会将这些卷积层简化为一个等效的单层卷积,从而显著提高推理速度。

  2. Rep-PAN 颈部网络
    YOLOv6 进一步改进了 YOLOv5 的 FPN + PANet 结构,通过 Rep-PAN 使得特征金字塔更加高效,提升了多尺度目标的检测能力。

  3. 无锚点机制
    YOLOv6 移除了锚点框的依赖,采用无

锚点的方式进行目标检测,减少了预设锚点框的不精确性,提升了检测精度。

结论

YOLOv6 相比 YOLOv5 具有更高的推理速度和检测精度,尤其在移动端和嵌入式设备上表现出色。通过引入 EfficientRep 和 Rep-PAN 等优化结构,YOLOv6 在不牺牲精度的前提下极大提升了检测效率,使其成为更加适合实时目标检测的模型。

相关文章:

目标检测-YOLOv6

YOLOv6 YOLOv6 是 YOLO 系列的一个新版本,相比 YOLOv5 进行了大量的优化与改进。YOLOv6 的设计目标是在提高模型检测精度的同时,进一步优化速度和效率,特别是在推理速度和部署便捷性方面。它采用了更先进的网络架构和优化技巧,在…...

Java面向对象与多态

目录 Java面向对象与多态 多态介绍 形成多态的前提 多态下成员访问的特点 成员变量 成员方法 访问特点总结 多态对比普通继承 普通继承优点与缺点 多态优点与缺点 向上转型与向下转型 向下转型存在的问题 多态接口练习 Java面向对象与多态 多态介绍 在前面学习到…...

redis分布式锁和lua脚本

业务场景:多个线程对共同资源的访问:库存超卖/用户重复下单的原因 解决方法一:利用jvm内置锁,将非原子性操作变成原子性操作 Synchronized锁的是对象,对象必须是单例的。锁的是this,代表当前所在的类,这个…...

项目实战 ---- 商用落地视频搜索系统(5)---service层核心

目录 背景 向下service 层 描述 功能 代码实现 核心阐述 向上service层 描述 功能 代码实现 核心阐述 背景 之前的 1-4 重点在介绍系统的实现架构,录入数据的组织形式,存储模式,search 方式,以及后期算法等。重点都是聚焦在后端。现在来看,基本的后端实现我们…...

Win32远线程注入

远线程注入 远线程(RemoteThread)注入是指一个进程在另一个进程中创建线程的技术,这是一种很经典的DLL注入技术。 虽然比较古老,但是很实用。通过远线程注入,再配合api函数的hook技术,可以实现很多有意思的功能。 实现远线程注入…...

CTF 竞赛密码学方向学习路径规划

目录 计算机科学基础计算机科学概念的引入、兴趣的引导开发环境的配置与常用工具的安装Watt Toolkit(Steam)、机场代理Scoop(Windows 用户可选)常用 Python 库SageMathLinux小工具 yafuOpenSSL Markdown编程基础Python其他编程语言…...

2024数学建模国赛B题代码

B题已经完成模型代码!详情查看文末名片 问题1:可以考虑使用统计学中的“样本量估算”方法,使用二项分布或正态近似来决定最少的样本量,并通过假设检验(如单侧检验)在95%和90%置信度下进行判断。 import n…...

PyTorch 卷积层详解

PyTorch 卷积层详解 卷积层(Convolutional Layers)是深度学习中用于提取输入数据特征的重要组件,特别适用于处理图像和序列数据。PyTorch 提供了多种卷积层,分别适用于不同维度的数据。本文将详细介绍这些卷积层,特别…...

【Kubernetes知识点问答题】kubernetes 控制器

目录 1. 说明 K8s 控制器的作用? 2. 什么是 ReplicaSet,说明它的主要用途。 3. Deployment 控制器是如何工作的,举例说明其常见用途。 4. 解释 DaemonSet,列举其使用场景。 5. 什么是 StatefulSet,其主要作用是什么…...

Patlibc———更快捷的更换libc

起初是为了简化做pwn题目时,来回更换libc的麻烦,为了简化命令,弄了一个小脚本,可以加入到/usr/local/bin中,当作一个快捷指令🔢 这个写在了tools库(git clone https://github.com/CH13hh/tools…...

基于飞腾平台的Hive的安装配置

【写在前面】 飞腾开发者平台是基于飞腾自身强大的技术基础和开放能力,聚合行业内优秀资源而打造的。该平台覆盖了操作系统、算法、数据库、安全、平台工具、虚拟化、存储、网络、固件等多个前沿技术领域,包含了应用使能套件、软件仓库、软件支持、软件适…...

c# json使用

安装包 用NuGet安装包:Newtonsoft.Json 对象转为Json字符串 public class Person {public string Name { get; set; }public int Age { get; set; } }Person person new Person { Name "John Doe", Age 30 }; string json2 JsonConvert.SerializeO…...

单点登录:cas单点登录实现原理浅析

cas单点登录实现原理浅析 一晃几个月没写博客了,今年多灾多难的一年。 安能摧眉折腰事权贵,使我不得开心颜! 财富是对认知的补偿,不是对勤奋的嘉奖。勤奋只能解决温饱,要挣到钱就得预知风口,或者有独到见解…...

java报错

java.lang.RuntimeException: org.hibernate.PersistentObjectException: detached entity passed to persist: com.tengzhi.base.model.E_xt_xmda...

uniapp动态页面API

目录 uni.setNavigationBarTitle动态设置标题 uni.showNavigationBarLoading为标题添加加载动画与uni.hideNavigationBarLoading停止加载动画 ​编辑 uni.setNavigationBarColor用于设置导航栏的颜色,包括背景颜色和文字颜色。这对于自定义应用的主题和风格非常有…...

最优化方法Python计算:求解约束优化问题的拉格朗日乘子算法

从仅有等式约束的问题入手。设优化问题(7.8) { minimize f ( x ) s.t. h ( x ) o ( 1 ) \begin{cases} \text{minimize}\quad\quad f(\boldsymbol{x})\\ \text{s.t.}\quad\quad\quad \boldsymbol{h}(\boldsymbol{x})\boldsymbol{o} \end{cases}\quad\quad(1) {minimizef(x)s.…...

每日OJ_牛客_骆驼命名法(递归深搜)

目录 牛客_骆驼命名法(简单模拟) 解析代码 牛客_骆驼命名法(简单模拟) 骆驼命名法__牛客网 解析代码 首先一个字符一个字符的读取内容: 遇到 _ 就直接跳过。如果上一个字符是 _ 则下一个字符转大写字母。 #inclu…...

MySQL 数据库管理与操作指南

文章目录 MySQL 数据库管理与操作指南1. 忘记 MySQL 密码的处理方法2. MySQL 数据库备份与恢复2.1 数据库备份2.2 数据库恢复 3. MySQL 用户与权限管理3.1 创建用户与授权3.2 查看所有用户3.3 删除用户 4. 关闭 GTID 复制模式5. 查看数据表的存储引擎5.1 查看 MySQL 支持的存储…...

Android Manifest 权限描述大全对照表

115工具网(115工具网-一个提供高效、实用、方便的在线工具集合网站)提供Android Manifest 权限描述大全对照表,可以方便andriod开发者查看安卓权限描述功能 权限名称描述android.permission.ACCESS_CHECKIN_PROPERTIES访问登记属性读取或写入…...

Ollama Qwen2 支持 Function Calling

默认 Ollama 中的 Qwen2 模型不支持 Function Calling,使用默认 Qwen2,Ollama 会报错。本文将根据官方模板对 ChatTemplate 进行改进,使得Qwen2 支持 Tools,支持函数调用。 Ollama 会检查对话模板中是否存在 Tools,如…...

APP测试工程师岗位面试题

一、你们公司研发团队采用敏捷开发模式的原因? 由于版本节奏比较快,开发与测试几乎并行,一个版本周期内会有两版在推动,也就是波次发布,波次发布用于尝试新加入的功能,做小范围快速的开发,验证…...

如何进行 AWS 云监控

什么是 AWS? Amazon Web Services(AWS)是 Amazon 提供的一个全面、广泛使用的云计算平台。它提供广泛的云服务,包括计算能力、存储选项、网络功能、数据库、分析、机器学习、人工智能、物联网和安全。 使用 AWS 有哪些好处&…...

第十六篇:走入计算机网络的传输层--传输层概述

1. 传输层的功能 ① 分割与重组数据 一次数据传输有大小限制,传输层需要做数据分割,所以在数据送达后必然也需要做数据重组。 ② 按端口号寻址 IP只能定位数据哪台主机,无法判断数据报文应该交给哪个应用,传输层给每个应用都设…...

提升效率!ArcGIS中创建脚本工具

在我们日常使用的ArcGIS中已经自带了很多功能强大的工具,但有时候遇到个人的特殊情况还是无法满足,这时就可以试着创建自定义脚本工具。 一、编写代码 此处的代码就是一个很简单的给图层更改别名的代码。 1. import arcpy 2. input_fc arcpy.GetParam…...

无人机之报警器的作用

一、紧急救援与辅助搜救 紧急救援:在事故或紧急情况下,无人机报警器可以迅速发出警报,指引救援人员前往事故地点,提高救援效率。 辅助搜救:无人机搭载报警器可以辅助寻找失踪人员或其他需要搜救的场景,通…...

风格控制水平创新高!南理工InstantX小红书发布CSGO:简单高效的端到端风格迁移框架

论文链接:https://arxiv.org/pdf/2408.16766 项目链接:https://csgo-gen.github.io/ 亮点直击 构建了一个专门用于风格迁移的数据集设计了一个简单但有效的端到端训练的风格迁移框架CSGO框架,以验证这个大规模数据集在风格迁移中的有益效果。…...

python文件自动化(4)

接上节课内容,在开始正式移动文件到目标文件夹之前,我们需要再思考一个问题。在代码运行之前,阿文的下载文件夹里已经存在一些分类文件夹了,比如图例中“PDF文件”这个文件夹就是已经存在的。这样的话,在程序运行时&am…...

HTTP 方法

HTTP 方法 1. 引言 HTTP(HyperText Transfer Protocol,超文本传输协议)是互联网上应用最为广泛的协议之一。它定义了客户端和服务器之间交换信息的格式和规则。在HTTP通信中,客户端(通常是浏览器)向服务器…...

通过redis-operator 来部署 Redis Cluster 集群

安装 Redis Operator 首先,需要安装 redis-operator。可以通过 Helm 或直接应用 YAML 文件来安装。 使用 Helm 安装: helm repo add ot-helm https://ot-container-kit.github.io/helm-charts/ helm install redis-operator ot-helm/redis-operator --…...

vue3集成sql语句编辑器

使用的是codemirror 安装 pnpm add codemirror vue-codemirror --savepnpm add codemirror/lang-sqlpnpm add codemirror/theme-one-dark使用 <template><codemirror v-model"configSql" placeholder"Code goes here..." ref"codemirrorR…...