当前位置: 首页 > news >正文

Python的图像算术与逻辑运算详解

一.图像加法运算

图像加法运算主要有两种方法。第一种是调用Numpy库实现,目标图像像素为两张图像的像素之和;第二种是通过OpenCV调用add()函数实现。第二种方法的函数原型如下:

  • dst = add(src1, src2[, dst[, mask[, dtype]]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。
    – dtype表示输出数组的可选深度

注意,当两幅图像的像素值相加结果小于等于255时,则输出图像直接赋值该结果,如120+48赋值为168;如果相加值大于255,则输出图像的像素结果设置为255,如(255+64) 赋值为255。下面的代码实现了图像加法运算。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片
img = cv2.imread("luo.png")#图像各像素加100
m = np.ones(img.shape, dtype="uint8")*100#OpenCV加法运算
result = cv2.add(img, m)#显示图像
cv2.imshow("original", img)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-1所示,左边为“小珞珞”的原始图像,右边为像素值增加100像素后的图像,输出图像显示更偏白。

在这里插入图片描述


二.图像减法运算

图像减法运算主要调用subtract()函数实现,其原型如下所示:

  • dst = subtract(src1, src2[, dst[, mask[, dtype]]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。
    – dtype表示输出数组的可选深度

具体实现代码如下所示:

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png")#图像各像素减50
m = np.ones(img.shape, dtype="uint8")*50#OpenCV减法运算
result = cv2.subtract(img, m)#显示图像
cv2.imshow("original", img)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-2所示,左边为原始图像,右边为像素值减少50像素后的图像,输出图像显示更偏暗。

在这里插入图片描述


三.图像与运算

与运算是计算机中一种基本的逻辑运算方式,符号表示为“&”,其运算规则为:

  • 0&0=0
  • 0&1=0
  • 1&0=0
  • 1&1=1

图像的与运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“与”操作,实现图像裁剪。

  • dst = bitwise_and(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

下面代码是通过图像与运算实现图像剪裁的功能。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png", cv2.IMREAD_GRAYSCALE)#获取图像宽和高
rows, cols = img.shape[:2]
print(rows, cols)#画圆形
circle = np.zeros((rows, cols), dtype="uint8")
cv2.circle(circle, (int(rows/2),int(cols/2)), 100, 255, -1)
print(circle.shape)
print(img.size, circle.size)#OpenCV图像与运算
result = cv2.bitwise_and(img, circle)#显示图像
cv2.imshow("original", img)
cv2.imshow("circle", circle)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-3所示,原始图像与圆形进行与运算之后,提取了其中心轮廓。同时输出图像的形状为377×326。注意,两张图像的大小和类型必须一致。

在这里插入图片描述


四.图像或运算

逻辑或运算是指如果一个操作数或多个操作数为 true,则逻辑或运算符返回布尔值 true;只有全部操作数为false,结果才是 false。图像的或运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“或”操作,实现图像裁剪。其函数原型如下所示:

  • dst = bitwise_or(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

下面代码是通过图像或运算实现图像剪裁的功能。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png", cv2.IMREAD_GRAYSCALE)#获取图像宽和高
rows, cols = img.shape[:2]#画圆形
circle = np.zeros((rows, cols), dtype="uint8")
cv2.circle(circle, (int(rows/2),int(cols/2)), 100, 255, -1)#OpenCV图像或运算
result = cv2.bitwise_or(img, circle)#显示图像
cv2.imshow("original", img)
cv2.imshow("circle", circle)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

输出如图4-4所示,原始图像与圆形进行或运算之后,提取了图像除中心原形之外的像素值。

在这里插入图片描述


五.图像非运算

图像非运算就是图像的像素反色处理,它将原始图像的黑色像素点转换为白色像素点,白色像素点则转换为黑色像素点,其函数原型如下:

  • dst = bitwise_not(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

图像非运算的实现代码如下所示。

#coding:utf-8
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("Lena.png", cv2.IMREAD_GRAYSCALE)#OpenCV图像非运算
result = cv2.bitwise_not(img)#显示图像
cv2.imshow("original", img)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

原始图像非运算之后输出如图4-5所示。

在这里插入图片描述


六.图像异或运算

逻辑异或运算(xor)是一个数学运算符,数学符号为“⊕”,计算机符号为“xor”,其运算法则为:如果a、b两个值不相同,则异或结果为1;如果a、b两个值相同,异或结果为0。

图像的异或运算是指两张图像(灰度图像或彩色图像均可)的每个像素值进行二进制“异或”操作,实现图像裁剪。其函数原型如下所示:

  • dst = bitwise_xor(src1, src2[, dst[, mask]])
    – src1表示第一张图像的像素矩阵
    – src2表示第二张图像的像素矩阵
    – dst表示输出的图像,必须和输入图像具有相同的大小和通道数
    – mask表示可选操作掩码(8位单通道数组),用于指定要更改的输出数组的元素。

图像异或运算的实现代码如下所示。

#coding:utf-8
# By:Eastmount
import cv2  
import numpy as np  #读取图片 
img = cv2.imread("luo.png", cv2.IMREAD_GRAYSCALE)#获取图像宽和高
rows, cols = img.shape[:2]#画圆形
circle = np.zeros((rows, cols), dtype="uint8")
cv2.circle(circle, (int(rows/2),int(cols/2)), 100, 255, -1)#OpenCV图像异或运算
result = cv2.bitwise_xor(img, circle)#显示图像
cv2.imshow("original", img)
cv2.imshow("circle", circle)
cv2.imshow("result", result)#等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()

原始图像与圆形进行异或运算之后输出如图4-6所示。

在这里插入图片描述


相关文章:

Python的图像算术与逻辑运算详解

一.图像加法运算 图像加法运算主要有两种方法。第一种是调用Numpy库实现,目标图像像素为两张图像的像素之和;第二种是通过OpenCV调用add()函数实现。第二种方法的函数原型如下: dst add(src1, src2[, dst[, mask[, dtype]]]) – src1表示第…...

WSL 下的 CentOS 装 Docker

WSL 下的 CentOS 装 Docker 卸载旧版本安装前的准备工作1. 安装 yum-utils2. 添加阿里云的 yum 镜像仓库3. 快速生成 Yum 缓存 安装Docker启动docker运行 hello-world卸载 Docker 引擎参考资料 卸载旧版本 sudo yum remove docker \ docker-client \ docker-client-latest \ d…...

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之…...

python之字符串

创建字符串 s "Hello, World!"常用字符串操作 获取字符串长度 length len(s) print(length) # 输出: 13字符串拼接 s1 "Hello" s2 "World" s3 s1 ", " s2 "!" print(s3) # 输出: Hello, World!重复字符串 s …...

算法打卡 Day28(回溯算法)-组合总数 + 组合总数 Ⅱ+ 电话号码的字母组合

文章目录 Leetcode 17-电话号码的字母组合题目描述解题思路 Leetcode 39-组合总数题目描述解题思路 Leetcode 216-组合总数 Ⅲ题目描述解题思路 Leetcode 17-电话号码的字母组合 题目描述 https://leetcode.cn/problems/letter-combinations-of-a-phone-number/description/ …...

【Hadoop|MapReduce篇】MapReduce概述

1. MapReduce定义 MapReduce是一个分布式运算程序的编程框架,是用户开发“基于Hadoop的数据分析应用”的核心框架。 MapReduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个Hadoop集群上。 2. Map…...

设置Virtualbox虚拟机共享文件夹

由于工作环境的原因,选择Virtualbox的方式安装虚拟操作系统,常用的操作系统为ubuntu,不知道道友是否也曾遇到这样的问题,就是虚拟机和主机进行文件拖拽的时候,会因为手抖造成拖拽失败,虚拟机界面显示大个的…...

从零开始的机器学习之旅

尊敬的读者们,在这个快速发展的数字时代,机器学习无疑已经成为了科技领域的一颗璀璨明星。它如同一把打开未来之门的钥匙,让我们能够窥探到数据背后的无限可能。今天,我将带领大家开启一段从零开始的机器学习之旅,让我…...

开源还是封闭?人工智能的两难选择

这篇文章于 2024 年 7 月 29 日首次出现在 The New Stack 上。人工智能正处于软件行业的完美风暴中,现在马克扎克伯格 (Mark Zuckerberg) 正在呼吁开源 AI。 关于如何控制 AI 的三个强大观点正在发生碰撞: 1 . 所有 AI 都应该是开…...

Prometheus 服务监控

官网:https://prometheus.io Prometheus 是什么 Prometheus 是一个开源的系统监控和报警工具,专注于记录和存储时间序列数据(time-series data)。它最初由 SoundCloud 开发,并已成为 CNCF(云原生计算基金会…...

建模杂谈系列252 规则的串行改并行

说明 提到规则,还是需要看一眼RETE算法: Rete算法是一种用于高效处理基于规则的系统中的模式匹配问题的算法,广泛应用于专家系统、推理引擎和生产系统。它的设计目的是在大量规则和数据的组合中快速找到满足特定规则条件的模式。 Rete算法…...

0.ffmpeg面向对象oopc

因为查rtsp相关问题,接触了下ffmpeg源码,发现它和linux内核一样,虽然都是c写的,但是都是面向对象的思想,c的面向对象称之为oopc。 这让我想起来一件好玩的事,有些搞linux内核驱动的只会c的开发人员不知道l…...

KDD2024参会笔记-Day1

知乎想法:链接 听的第一场汇报:RAG Meeting LLMs 综述论文:https://arxiv.org/pdf/2405.06211 PPT:https://advanced-recommender-systems.github.io/RAG-Meets-LLMs/2024-KDD-RAG-Meets-LLM-tutorial-Part1.pdf 检索&#xff1…...

Java操作Elasticsearch的实用指南

Java操作Elasticsearch的实用指南 一、创建索引二、增删改查 一、创建索引 在ElasticSearch中索引相当于mysql中的表,mapping相当于表结构,所以第一步我们要先创建索引。 假设我们有一张文章表的数据需要同步到ElasticSearch,首先需要根据数据库表创建…...

数据库系统 第42节 数据库索引简介

数据库索引是数据库表中一个或多个列的数据结构,用于加快数据检索速度。除了基础的B-Tree索引,其他类型的索引针对特定的数据类型和查询模式提供了优化。以下是几种不同类型的索引及其使用场景的详细说明和示例代码。 1. 位图索引 (Bitmap Index) 位图…...

C++11 --- 智能指针

序言 在使用 C / C 进行编程时,许多场景都需要我们在堆上申请空间,堆内存的申请和释放都需要我们自己进行手动管理。这就存在容易造成堆内存泄露(忘记释放),二次释放,程序发生异常时内存泄露等问题&#xf…...

C#顺序万年历自写的求余函数与周位移算法

static int 返回月的天数(int 年, int 月){return (月 2 ?(((年 % 4 0 && 年 % 100 > 0) || 年 % 400 0) ? 29 : 28) :(((月 < 7 && 月 % 2 > 0) || (月 > 7 && 月 % 2 0)) ? 31 : 30));}static int 返回年总天数(int 年, int 标 …...

【Java并发编程一】八千字详解多线程

目录 多线程基础 1.线程和进程 线程是什么&#xff1f; 为啥要有线程&#xff1f; 进程和线程的区别&#xff1f; Java 的线程 和 操作系统线程 的关系 使用jconsole观察线程 2.创建线程的多种方式 3.Thread类及其常见方法 Thread类的常见构造方法 Thread类的常见属性…...

CentOS 8FTP服务器

FTP&#xff08;文件传输协议&#xff09;是一种客户端-服务器网络协议&#xff0c;允许用户在远程计算机之间传输文件。这里有很多可用于Linux的开源FTP服务软件&#xff0c;最流行最常用的FTP服务软件有 PureFTPd, ProFTPD, 和 vsftpd。在本教程中&#xff0c;我们将在CentOS…...

C++ | Leetcode C++题解之第385题迷你语法分析器

题目&#xff1a; 题解&#xff1a; class Solution { public:NestedInteger deserialize(string s) {if (s[0] ! [) {return NestedInteger(stoi(s));}stack<NestedInteger> st;int num 0;bool negative false;for (int i 0; i < s.size(); i) {char c s[i];if …...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

MySQL中【正则表达式】用法

MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现&#xff08;两者等价&#xff09;&#xff0c;用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例&#xff1a; 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...

多种风格导航菜单 HTML 实现(附源码)

下面我将为您展示 6 种不同风格的导航菜单实现&#xff0c;每种都包含完整 HTML、CSS 和 JavaScript 代码。 1. 简约水平导航栏 <!DOCTYPE html> <html lang"zh-CN"> <head><meta charset"UTF-8"><meta name"viewport&qu…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)

题目 做法 启动靶机&#xff0c;点进去 点进去 查看URL&#xff0c;有 ?fileflag.php说明存在文件包含&#xff0c;原理是php://filter 协议 当它与包含函数结合时&#xff0c;php://filter流会被当作php文件执行。 用php://filter加编码&#xff0c;能让PHP把文件内容…...

MySQL 主从同步异常处理

阅读原文&#xff1a;https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主&#xff0c;遇到的这个错误&#xff1a; Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一&#xff0c;通常表示&#xff…...

redis和redission的区别

Redis 和 Redisson 是两个密切相关但又本质不同的技术&#xff0c;它们扮演着完全不同的角色&#xff1a; Redis: 内存数据库/数据结构存储 本质&#xff1a; 它是一个开源的、高性能的、基于内存的 键值存储数据库。它也可以将数据持久化到磁盘。 核心功能&#xff1a; 提供丰…...

Docker、Wsl 打包迁移环境

电脑需要开启wsl2 可以使用wsl -v 查看当前的版本 wsl -v WSL 版本&#xff1a; 2.2.4.0 内核版本&#xff1a; 5.15.153.1-2 WSLg 版本&#xff1a; 1.0.61 MSRDC 版本&#xff1a; 1.2.5326 Direct3D 版本&#xff1a; 1.611.1-81528511 DXCore 版本&#xff1a; 10.0.2609…...