C++ | Leetcode C++题解之第385题迷你语法分析器
题目:
题解:
class Solution {
public:NestedInteger deserialize(string s) {if (s[0] != '[') {return NestedInteger(stoi(s));}stack<NestedInteger> st;int num = 0;bool negative = false;for (int i = 0; i < s.size(); i++) {char c = s[i];if (c == '-') {negative = true;} else if (isdigit(c)) {num = num * 10 + c - '0';} else if (c == '[') {st.emplace(NestedInteger());} else if (c == ',' || c == ']') {if (isdigit(s[i - 1])) {if (negative) {num *= -1;}st.top().add(NestedInteger(num));}num = 0;negative = false;if (c == ']' && st.size() > 1) {NestedInteger ni = st.top();st.pop();st.top().add(ni);}}}return st.top();}
};
相关文章:

C++ | Leetcode C++题解之第385题迷你语法分析器
题目: 题解: class Solution { public:NestedInteger deserialize(string s) {if (s[0] ! [) {return NestedInteger(stoi(s));}stack<NestedInteger> st;int num 0;bool negative false;for (int i 0; i < s.size(); i) {char c s[i];if …...

【软件设计师真题】第一大题---数据流图设计
解答数据流图的题目关键在于细心。 考试时一定要仔细阅读题目说明和给出的流程图。另外,解题时要懂得将说明和流程图进行对照,将父图和子图进行对照,切忌按照常识来猜测。同时应按照一定顺序考虑问题,以防遗漏,比如可以…...
系统架构的发展历程之模块化与组件化
模块化开发方法 模块化开发方法是指把一个待开发的软件分解成若干个小的而且简单的部分,采用对复杂事物分而治之的经典原则。模块化开发方法涉及的主要问题是模块设计的规则,即系统如何分解成模块。而每一模块都可独立开发与测试,最后再组装…...

基因组学中的深度学习
----/ START /---- 基因组学其实是一门将数据驱动作为主要研究手段的学科,机器学习方法和统计学方法在基因组学中的应用一直都比较广泛。 不过现在多组学数据进一步激增——这个从目前逐渐增多的各类大规模人群基因组项目上可以看出来,这其实带来了新的挑…...

解决老师询问最高分数问题的编程方案
解决老师询问最高分数问题的编程方案 问题分析数据结构选择:线段树线段树的基本操作伪代码伪代码:构建线段树伪代码:更新操作伪代码:查询操作C语言实现代码详细解释在日常教学中,老师经常需要查询某一群学生中的最高分数,并有时会更新某位同学的成绩。为了实现这一功能,…...
com.baomidou.mybatisplus.annotation.DbType 无法引入
com.baomidou.mybatisplus.annotation.DbType 无法引入爆红 解决 解决 ❤️ 3.4.1 是mybatis-plus版本,根据实际的配置→版本一致 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-annotation</artifactId>&…...

从零开始学习JVM(七)- StringTable字符串常量池
1 概述 String应该是Java使用最多的类吧,很少有Java程序没有使用到String的。在Java中创建对象是一件挺耗费性能的事,而且我们又经常使用相同的String对象,那么创建这些相同的对象不是白白浪费性能吗。所以就有了StringTable这一特殊的存在&…...
数据库课程设计mysql
进行 MySQL 数据库课程设计通常包括以下几个步骤,从需求分析到数据库设计和实现。以下是一个常见的流程及要点: 1. 需求分析 首先,明确系统的功能需求。这包括用户需求、业务流程、功能模块等。你需要与相关人员(比如老师、同学…...
AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理
AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应…...

点餐小程序实战教程03创建应用
目录 1 创建应用2 第一部分侧边栏3 第二部分页面功能区4 第三部分大纲树5 第四部分代码区6 第五部分模式切换7 第六部分编辑区域8 第七部分组件区域9 第八部分,发布区域10 第九部分开发调试和高阶配置总结 上一篇我们介绍了如何实现后端API,介绍了登录验…...

鸿蒙自动化发布测试版本app
创建API客户端 API客户端是AppGallery Connect用于管理用户访问AppGallery Connect API的身份凭据,您可以给不同角色创建不同的API客户端,使不同角色可以访问对应权限的AppGallery Connect API。在访问某个API前,必须创建有权访问该API的API…...
力扣9.7
115.不同的子序列 题目 给你两个字符串 s 和 t ,统计并返回在 s 的 子序列 中 t 出现的个数,结果需要对 109 7 取模。 数据范围 1 < s.length, t.length < 1000s 和 t 由英文字母组成 分析 令dp[i][j]为s的前i个字符构成的子序列中为t的前j…...

GPU 带宽功耗优化
移动端GPU 的内存结构: 先简述移动端内存cache结构;上图的UMA结构 on-Chip memory 包括了 L1、L2 cache,非常关键的移动端的 Tiles 也是保存在 on-chip上还包括寄存器文件:提供给每个核心使用的极高速存储。 共享内存(…...

Linux Centos 7网络配置
本步骤基于Centos 7,使用的虚拟机是VMware Workstation Pro,最终可实现虚拟机与外网互通。如为其他发行版本的linux,可能会有差异。 1、检查外网访问状态 ping www.baidu.com 2、查看网卡配置信息 ip addr 3、配置网卡 cd /etc/sysconfig…...

第三天旅游线路规划
第三天:从贾登峪到禾木风景区,晚上住宿贾登峪; 从贾登峪到禾木风景区入口: 1、行程安排 根据上面的耗时情况,规划一天的行程安排如下: 1)早上9:00起床,吃完早饭&#…...

C++第四十七弹---深入理解异常机制:try, catch, throw全面解析
✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】 目录 1.C语言传统的处理错误的方式 2.C异常概念 3. 异常的使用 3.1 异常的抛出和捕获 3.2 异常的重新抛出 3.3 异常安全 3.4 异常规范 4.自定义…...
go 和 java 技术选型思考
背景: go和java我这边自身都在使用,感受比较深,java使用了有7年多,go也就是今年开始的,公司需要所以就学了使用,发现这两个语言都很好,需要根据场景选择,我写下我这边的看法。 关于…...

传统CV算法——边缘算子与图像金字塔算法介绍
边缘算子 图像梯度算子 - Sobel Sobel算子是一种用于边缘检测的图像梯度算子,它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域,这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来…...

图像去噪算法性能比较与分析
在数字图像处理领域,去噪是一个重要且常见的任务。本文将介绍一种实验,通过MATLAB实现多种去噪算法,并比较它们的性能。实验中使用了包括中值滤波(MF)、自适应加权中值滤波(ACWMF)、差分同态算法…...

Vision Transformer(ViT)模型原理及PyTorch逐行实现
Vision Transformer(ViT)模型原理及PyTorch逐行实现 一、TRM模型结构 1.Encoder Position Embedding 注入位置信息Multi-head Self-attention 对各个位置的embedding融合(空间融合)LayerNorm & ResidualFeedforward Neural Network 对每个位置上单…...

linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...

C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...
Cesium1.95中高性能加载1500个点
一、基本方式: 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

前端导出带有合并单元格的列表
// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
Spring Boot + MyBatis 集成支付宝支付流程
Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例(电脑网站支付) 1. 添加依赖 <!…...