当前位置: 首页 > news >正文

【软件设计师真题】第一大题---数据流图设计

解答数据流图的题目关键在于细心。
考试时一定要仔细阅读题目说明和给出的流程图。另外,解题时要懂得将说明和流程图进行对照,将父图和子图进行对照,切忌按照常识来猜测。同时应按照一定顺序考虑问题,以防遗漏,比如可以按说明的顺序,或是按数据流向的顺序逐个排除和分析。

一、2016年5月真题:

1、题目

某会议中心提供举办会议的场地设施和各种设备,供公司与各类组织机构租用。场地包括一个大型报告厅、一个小型报告厅以及诸多会议室。这些报告厅和会议室可提供的设备有投影仪、白板、视频播放/回放设备、计算机等。为了加强管理,该中心欲开发会议预订系统,系统的主要功能如下。

(1)检查可用性。客户提交预订请求后,检查预订表,判定所申请的场地是否在申请日
期内可用:如果不可用,返回不可用信息。

(2)临时预订。会议中心管理员收到客户预订请求的通知之后,提交确认。系统生成新临时预订存入预订表,并对新客户创建一条客户信息记录加以保存。根据客户记录给客户发送临时预订确认信息和支付定金要求。

(3)分配设施与设备。根据临时预订或变更预订的设备和设施需求,分配所需设备(均能满足用户要求)和设施,更新相应的表和预订表。

(4)确认预订。管理员收到客户支付定金的通知后,检查确认,更新预订表,根据客户
记录给客户发送预订确认信息。

(5)变更预订。客户还可以在支付余款前提交变更预订请求,对变更的预订请求检查可用性,如果可用,分配设施和设备:如果不可用,返回不可用信息。管理员确认变更后,根据客户记录给客户发送确认信息。

(6)要求付款。管理员从预订表中查询距预订的会议时间两周内的预订,根据客户记录
给满足条件的客户发送支付余款要求。

(7)支付余款。管理员收到客户余款支付的通知后,检查确认,更新预订表中的己支付余款信息。

现采用结构化方法对会议预订系统进行分析与设计,获得如图 1-2所示的上下文数据流图和图 1-3 所示的 0层数据流图(不完整)。

在这里插入图片描述

【问题 1】(2 分)
使用说明中的词语,给出图1-2中的实体 E1~E2 的名称。

在这里插入图片描述

【问题 2】(4 分)
使用说明中的词语,给出图 1-3 中的数据存储 D1~D4 的名称。

在这里插入图片描述

【问题3】(6 分)
根据说明和图中的术语,补充图1-3中缺失的数据流及其起点和终点

在这里插入图片描述

【问题 4】(3 分)
如果发送给客户的确认信息是通过 E-mail 系统向客户信息中的电子邮件地址进行发送的,那么需要对图 1-2 和图 1-3 进行哪些修改?用 150 字以内文字加以说明。

在这里插入图片描述

2、解析

【问题 1】
根据 0层数据流中 E1 向系统发送预订请求数据流可知,E1 实体为客户;从预订请求通知到临时预订确认可知 E2 实体为管理员。

【问题2】
根据题目对功能的描述,结合0层数据流图,新临时预订提交、变更的预订请求提交等,可知 D1为预订表:新客户信息存入 D2 中,可知 D2 为客户信息记录表;根据分配设施和设备数据流,可以得到 D3、D4 分别为设施表和设备表。

【问题3】
由“确认预订”收到客户支付定金的通知后,检查确认更新预订表,同时要向客户发送预订确认信息,存在一个起点为 4(确认预订)到终点为 E1的数据流,即预订确认信息数据流;根据临时预订描述,首先要由客户发送预订请求,提交确认,系统生成新临时预订存入预订表,所以存在一个起点为客户即 E1,终点为 2(临时预订)的数据流,即客户临时预订信息数据流。

【问题 4】
略。

3、答案

【问题 1】
E1:客户
E2:管理员

【问题 2】
D1:预订表。
D2:客户信息记录表
D3:设施表。
D4:设备表

【问题3】
(1)数据流名称:预订确认信息。起点:4(确认预订)。终点:E1。
(2)数据流名称:客户信息。起点:E1。终点:2(临时预订)。

【问题 4】

图 1-2 中:增加外部实体“第三方 E-mail 系统”,将临时预订/预订/变更确认信息终点均修改至“第三方 E-mail 系统”。

图 1-3 中:增加外部实体“第三方 E-mai 系统”,增加加工“发送邮件”,将临时预订/预订/变更确认信息终点均修改至“发送邮件”加工,并增加从 D2到“发送邮件”加工,再从发送邮件加工引出数据流 临时预订/预订/变更确认信息,的数据流“电子邮件地址”终点为“第三方 E-mail 系统”。

相关文章:

【软件设计师真题】第一大题---数据流图设计

解答数据流图的题目关键在于细心。 考试时一定要仔细阅读题目说明和给出的流程图。另外,解题时要懂得将说明和流程图进行对照,将父图和子图进行对照,切忌按照常识来猜测。同时应按照一定顺序考虑问题,以防遗漏,比如可以…...

系统架构的发展历程之模块化与组件化

模块化开发方法 模块化开发方法是指把一个待开发的软件分解成若干个小的而且简单的部分,采用对复杂事物分而治之的经典原则。模块化开发方法涉及的主要问题是模块设计的规则,即系统如何分解成模块。而每一模块都可独立开发与测试,最后再组装…...

基因组学中的深度学习

----/ START /---- 基因组学其实是一门将数据驱动作为主要研究手段的学科,机器学习方法和统计学方法在基因组学中的应用一直都比较广泛。 不过现在多组学数据进一步激增——这个从目前逐渐增多的各类大规模人群基因组项目上可以看出来,这其实带来了新的挑…...

解决老师询问最高分数问题的编程方案

解决老师询问最高分数问题的编程方案 问题分析数据结构选择:线段树线段树的基本操作伪代码伪代码:构建线段树伪代码:更新操作伪代码:查询操作C语言实现代码详细解释在日常教学中,老师经常需要查询某一群学生中的最高分数,并有时会更新某位同学的成绩。为了实现这一功能,…...

com.baomidou.mybatisplus.annotation.DbType 无法引入

com.baomidou.mybatisplus.annotation.DbType 无法引入爆红 解决 解决 ❤️ 3.4.1 是mybatis-plus版本&#xff0c;根据实际的配置→版本一致 <dependency><groupId>com.baomidou</groupId><artifactId>mybatis-plus-annotation</artifactId>&…...

从零开始学习JVM(七)- StringTable字符串常量池

1 概述 String应该是Java使用最多的类吧&#xff0c;很少有Java程序没有使用到String的。在Java中创建对象是一件挺耗费性能的事&#xff0c;而且我们又经常使用相同的String对象&#xff0c;那么创建这些相同的对象不是白白浪费性能吗。所以就有了StringTable这一特殊的存在&…...

数据库课程设计mysql

进行 MySQL 数据库课程设计通常包括以下几个步骤&#xff0c;从需求分析到数据库设计和实现。以下是一个常见的流程及要点&#xff1a; 1. 需求分析 首先&#xff0c;明确系统的功能需求。这包括用户需求、业务流程、功能模块等。你需要与相关人员&#xff08;比如老师、同学…...

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中&#xff0c;优化算法被广泛应用于训练神经网络模型。随机梯度下降法&#xff08;SGD&#xff09;是最常用的优化算法之一&#xff0c;但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应…...

点餐小程序实战教程03创建应用

目录 1 创建应用2 第一部分侧边栏3 第二部分页面功能区4 第三部分大纲树5 第四部分代码区6 第五部分模式切换7 第六部分编辑区域8 第七部分组件区域9 第八部分&#xff0c;发布区域10 第九部分开发调试和高阶配置总结 上一篇我们介绍了如何实现后端API&#xff0c;介绍了登录验…...

鸿蒙自动化发布测试版本app

创建API客户端 API客户端是AppGallery Connect用于管理用户访问AppGallery Connect API的身份凭据&#xff0c;您可以给不同角色创建不同的API客户端&#xff0c;使不同角色可以访问对应权限的AppGallery Connect API。在访问某个API前&#xff0c;必须创建有权访问该API的API…...

力扣9.7

115.不同的子序列 题目 给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数&#xff0c;结果需要对 109 7 取模。 数据范围 1 < s.length, t.length < 1000s 和 t 由英文字母组成 分析 令dp[i][j]为s的前i个字符构成的子序列中为t的前j…...

GPU 带宽功耗优化

移动端GPU 的内存结构&#xff1a; 先简述移动端内存cache结构&#xff1b;上图的UMA结构 on-Chip memory 包括了 L1、L2 cache&#xff0c;非常关键的移动端的 Tiles 也是保存在 on-chip上还包括寄存器文件&#xff1a;提供给每个核心使用的极高速存储。 共享内存&#xff08…...

Linux Centos 7网络配置

本步骤基于Centos 7&#xff0c;使用的虚拟机是VMware Workstation Pro&#xff0c;最终可实现虚拟机与外网互通。如为其他发行版本的linux&#xff0c;可能会有差异。 1、检查外网访问状态 ping www.baidu.com 2、查看网卡配置信息 ip addr 3、配置网卡 cd /etc/sysconfig…...

第三天旅游线路规划

第三天&#xff1a;从贾登峪到禾木风景区&#xff0c;晚上住宿贾登峪&#xff1b; 从贾登峪到禾木风景区入口&#xff1a; 1、行程安排 根据上面的耗时情况&#xff0c;规划一天的行程安排如下&#xff1a; 1&#xff09;早上9&#xff1a;00起床&#xff0c;吃完早饭&#…...

C++第四十七弹---深入理解异常机制:try, catch, throw全面解析

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1.C语言传统的处理错误的方式 2.C异常概念 3. 异常的使用 3.1 异常的抛出和捕获 3.2 异常的重新抛出 3.3 异常安全 3.4 异常规范 4.自定义…...

go 和 java 技术选型思考

背景&#xff1a; go和java我这边自身都在使用&#xff0c;感受比较深&#xff0c;java使用了有7年多&#xff0c;go也就是今年开始的&#xff0c;公司需要所以就学了使用&#xff0c;发现这两个语言都很好&#xff0c;需要根据场景选择&#xff0c;我写下我这边的看法。 关于…...

传统CV算法——边缘算子与图像金字塔算法介绍

边缘算子 图像梯度算子 - Sobel Sobel算子是一种用于边缘检测的图像梯度算子&#xff0c;它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域&#xff0c;这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来…...

图像去噪算法性能比较与分析

在数字图像处理领域&#xff0c;去噪是一个重要且常见的任务。本文将介绍一种实验&#xff0c;通过MATLAB实现多种去噪算法&#xff0c;并比较它们的性能。实验中使用了包括中值滤波&#xff08;MF&#xff09;、自适应加权中值滤波&#xff08;ACWMF&#xff09;、差分同态算法…...

Vision Transformer(ViT)模型原理及PyTorch逐行实现

Vision Transformer(ViT)模型原理及PyTorch逐行实现 一、TRM模型结构 1.Encoder Position Embedding 注入位置信息Multi-head Self-attention 对各个位置的embedding融合&#xff08;空间融合&#xff09;LayerNorm & ResidualFeedforward Neural Network 对每个位置上单…...

828华为云征文 | Flexus X实例CPU、内存及磁盘性能实测与分析

引言 随着云计算的普及&#xff0c;企业对于云资源的需求日益增加&#xff0c;而选择一款性能强劲、稳定性高的云实例成为了关键。华为云Flexus X实例作为华为云最新推出的高性能实例&#xff0c;旨在为用户提供更强的计算能力和更高的网络带宽支持。最近华为云828 B2B企业节正…...

wordpress后台更新后 前端没变化的解决方法

使用siteground主机的wordpress网站&#xff0c;会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后&#xff0c;网站没有变化的情况。 不熟悉siteground主机的新手&#xff0c;遇到这个问题&#xff0c;就很抓狂&#xff0c;明明是哪都没操作错误&#x…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

Redis数据倾斜问题解决

Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中&#xff0c;部分节点存储的数据量或访问量远高于其他节点&#xff0c;导致这些节点负载过高&#xff0c;影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...