当前位置: 首页 > news >正文

数据库课程设计mysql

进行 MySQL 数据库课程设计通常包括以下几个步骤,从需求分析到数据库设计和实现。以下是一个常见的流程及要点:

1. 需求分析

首先,明确系统的功能需求。这包括用户需求、业务流程、功能模块等。你需要与相关人员(比如老师、同学或客户)讨论,了解系统应具备的功能。例如,你可能需要设计一个学生管理系统,那么需求可能包括学生信息管理、课程安排、成绩管理等。

2. 概念设计

在需求分析的基础上,进行概念设计。这通常包括:

  • 实体-关系图(ER图):定义系统中涉及的实体(如学生、课程、教师)以及实体之间的关系(如选课、授课)。

    示例 ER 图:

    • 实体:学生(Student)、课程(Course)、教师(Teacher)
    • 关系:选课(Enrollment)、授课(Teaching)
  • 属性:为每个实体和关系定义属性,如学生实体可能包含学号、姓名、性别、年龄等属性。

3. 逻辑设计

将概念设计转换为数据库模型。这一步包括:

  • 表结构设计:根据 ER 图设计数据库表格,包括表名、字段名、数据类型、主键、外键等。

    示例表设计:

    • Student 表:student_id (PK), name, gender, age
    • Course 表:course_id (PK), course_name, credits
    • Enrollment 表:student_id (FK), course_id (FK), grade
  • 规范化:对表进行规范化处理,消除冗余,减少数据的重复存储,确保数据的一致性。

4. 物理设计

根据逻辑设计,创建物理数据库。这涉及到:

  • 数据库创建:使用 SQL 语句创建数据库和表。

    CREATE DATABASE student_management;
    USE student_management;CREATE TABLE Student (student_id INT PRIMARY KEY,name VARCHAR(50),gender CHAR(1),age INT
    );CREATE TABLE Course (course_id INT PRIMARY KEY,course_name VARCHAR(100),credits INT
    );CREATE TABLE Enrollment (student_id INT,course_id INT,grade CHAR(2),PRIMARY KEY (student_id, course_id),FOREIGN KEY (student_id) REFERENCES Student(student_id),FOREIGN KEY (course_id) REFERENCES Course(course_id)
    );
    
  • 索引设计:根据查询的频率和性能需求,设计适当的索引。

5. 数据库实现与测试

  • 数据插入:使用 SQL 语句插入一些测试数据。

    INSERT INTO Student (student_id, name, gender, age) VALUES (1, 'Alice', 'F', 20);
    INSERT INTO Course (course_id, course_name, credits) VALUES (101, 'Database Systems', 4);
    INSERT INTO Enrollment (student_id, course_id, grade) VALUES (1, 101, 'A');
    
  • 功能实现:实现课程设计中的核心功能,比如添加学生、查询成绩、更新课程等。

  • 测试:通过执行各种 SQL 查询来测试系统功能,确保所有功能正常运行。

6. 报告撰写

撰写课程设计报告,内容包括:

  • 需求分析
  • ER 图和表结构设计
  • 关键 SQL 语句示例
  • 数据库实现和测试的结果
  • 遇到的问题和解决方案

7. 总结与答辩准备

最后,总结你的设计过程和所学到的知识,准备可能的答辩问题。

这个流程是一个典型的数据库课程设计过程,通过这个流程,你可以系统地设计和实现一个基于 MySQL 的数据库系统。

相关文章:

数据库课程设计mysql

进行 MySQL 数据库课程设计通常包括以下几个步骤,从需求分析到数据库设计和实现。以下是一个常见的流程及要点: 1. 需求分析 首先,明确系统的功能需求。这包括用户需求、业务流程、功能模块等。你需要与相关人员(比如老师、同学…...

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应…...

点餐小程序实战教程03创建应用

目录 1 创建应用2 第一部分侧边栏3 第二部分页面功能区4 第三部分大纲树5 第四部分代码区6 第五部分模式切换7 第六部分编辑区域8 第七部分组件区域9 第八部分,发布区域10 第九部分开发调试和高阶配置总结 上一篇我们介绍了如何实现后端API,介绍了登录验…...

鸿蒙自动化发布测试版本app

创建API客户端 API客户端是AppGallery Connect用于管理用户访问AppGallery Connect API的身份凭据,您可以给不同角色创建不同的API客户端,使不同角色可以访问对应权限的AppGallery Connect API。在访问某个API前,必须创建有权访问该API的API…...

力扣9.7

115.不同的子序列 题目 给你两个字符串 s 和 t &#xff0c;统计并返回在 s 的 子序列 中 t 出现的个数&#xff0c;结果需要对 109 7 取模。 数据范围 1 < s.length, t.length < 1000s 和 t 由英文字母组成 分析 令dp[i][j]为s的前i个字符构成的子序列中为t的前j…...

GPU 带宽功耗优化

移动端GPU 的内存结构&#xff1a; 先简述移动端内存cache结构&#xff1b;上图的UMA结构 on-Chip memory 包括了 L1、L2 cache&#xff0c;非常关键的移动端的 Tiles 也是保存在 on-chip上还包括寄存器文件&#xff1a;提供给每个核心使用的极高速存储。 共享内存&#xff08…...

Linux Centos 7网络配置

本步骤基于Centos 7&#xff0c;使用的虚拟机是VMware Workstation Pro&#xff0c;最终可实现虚拟机与外网互通。如为其他发行版本的linux&#xff0c;可能会有差异。 1、检查外网访问状态 ping www.baidu.com 2、查看网卡配置信息 ip addr 3、配置网卡 cd /etc/sysconfig…...

第三天旅游线路规划

第三天&#xff1a;从贾登峪到禾木风景区&#xff0c;晚上住宿贾登峪&#xff1b; 从贾登峪到禾木风景区入口&#xff1a; 1、行程安排 根据上面的耗时情况&#xff0c;规划一天的行程安排如下&#xff1a; 1&#xff09;早上9&#xff1a;00起床&#xff0c;吃完早饭&#…...

C++第四十七弹---深入理解异常机制:try, catch, throw全面解析

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 目录 1.C语言传统的处理错误的方式 2.C异常概念 3. 异常的使用 3.1 异常的抛出和捕获 3.2 异常的重新抛出 3.3 异常安全 3.4 异常规范 4.自定义…...

go 和 java 技术选型思考

背景&#xff1a; go和java我这边自身都在使用&#xff0c;感受比较深&#xff0c;java使用了有7年多&#xff0c;go也就是今年开始的&#xff0c;公司需要所以就学了使用&#xff0c;发现这两个语言都很好&#xff0c;需要根据场景选择&#xff0c;我写下我这边的看法。 关于…...

传统CV算法——边缘算子与图像金字塔算法介绍

边缘算子 图像梯度算子 - Sobel Sobel算子是一种用于边缘检测的图像梯度算子&#xff0c;它通过计算图像亮度的空间梯度来突出显示图像中的边缘。Sobel算子主要识别图像中亮度变化快的区域&#xff0c;这些区域通常对应于边缘。它是通过对图像进行水平和垂直方向的差分运算来…...

图像去噪算法性能比较与分析

在数字图像处理领域&#xff0c;去噪是一个重要且常见的任务。本文将介绍一种实验&#xff0c;通过MATLAB实现多种去噪算法&#xff0c;并比较它们的性能。实验中使用了包括中值滤波&#xff08;MF&#xff09;、自适应加权中值滤波&#xff08;ACWMF&#xff09;、差分同态算法…...

Vision Transformer(ViT)模型原理及PyTorch逐行实现

Vision Transformer(ViT)模型原理及PyTorch逐行实现 一、TRM模型结构 1.Encoder Position Embedding 注入位置信息Multi-head Self-attention 对各个位置的embedding融合&#xff08;空间融合&#xff09;LayerNorm & ResidualFeedforward Neural Network 对每个位置上单…...

828华为云征文 | Flexus X实例CPU、内存及磁盘性能实测与分析

引言 随着云计算的普及&#xff0c;企业对于云资源的需求日益增加&#xff0c;而选择一款性能强劲、稳定性高的云实例成为了关键。华为云Flexus X实例作为华为云最新推出的高性能实例&#xff0c;旨在为用户提供更强的计算能力和更高的网络带宽支持。最近华为云828 B2B企业节正…...

FreeRTOS学习笔记(六)队列

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、队列的基本内容1.1 队列的引入1.2 FreeRTOS 队列的功能与作用1.3 队列的结构体1.4 队列的使用流程 二、相关API详解2.1 xQueueCreate2.2 xQueueSend2.3 xQu…...

【Python篇】PyQt5 超详细教程——由入门到精通(中篇一)

文章目录 PyQt5入门级超详细教程前言第4部分&#xff1a;事件处理与信号槽机制4.1 什么是信号与槽&#xff1f;4.2 信号与槽的基本用法4.3 信号与槽的基础示例代码详解&#xff1a; 4.4 处理不同的信号代码详解&#xff1a; 4.5 自定义信号与槽代码详解&#xff1a; 4.6 信号槽…...

LinuxQt下的一些坑之一

我们在使用Qt开发时&#xff0c;经常会遇到Windows上应用正常&#xff0c;但到Linux嵌入式下就会出现莫名奇妙的问题。这篇文章就举例分析下&#xff1a; 1.QPushButton按钮外侧虚线框问题 Windows下QPushButton按钮设置样式正常&#xff0c;但到了Linux下就会有一个虚线边框。…...

Statement batch

我们可以看到 Statement 和 PreparedStatement 为我们提供的批次执行 sql 操作 JDBC 引入上述 batch 功能的主要目的&#xff0c;是加快对客户端SQL的执行和响应速度&#xff0c;并进而提高数据库整体并发度&#xff0c;而 jdbc batch 能够提高对客户端SQL的执行和响应速度,其…...

PPP 、PPPoE 浅析和配置示例

一、名词&#xff1a; PPP&#xff1a; Point to Point Protocol 点到点协议 LCP&#xff1a;Link Control Protocol 链路控制协议 NCP&#xff1a;Network Control Protocol 网络控制协议&#xff0c;对于上层协议的支持&#xff0c;N 可以为IPv4、IPv6…...

【Python机器学习】词向量推理——词向量

目录 面向向量的推理 使用词向量的更多原因 如何计算Word2vec表示 skip-gram方法 什么是softmax 神经网络如何学习向量表示 用线性代数检索词向量 连续词袋方法 skip-gram和CBOW&#xff1a;什么时候用哪种方法 word2vec计算技巧 高频2-gram 高频词条降采样 负采样…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

如何将联系人从 iPhone 转移到 Android

从 iPhone 换到 Android 手机时&#xff0c;你可能需要保留重要的数据&#xff0c;例如通讯录。好在&#xff0c;将通讯录从 iPhone 转移到 Android 手机非常简单&#xff0c;你可以从本文中学习 6 种可靠的方法&#xff0c;确保随时保持连接&#xff0c;不错过任何信息。 第 1…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

LLM基础1_语言模型如何处理文本

基于GitHub项目&#xff1a;https://github.com/datawhalechina/llms-from-scratch-cn 工具介绍 tiktoken&#xff1a;OpenAI开发的专业"分词器" torch&#xff1a;Facebook开发的强力计算引擎&#xff0c;相当于超级计算器 理解词嵌入&#xff1a;给词语画"…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

自然语言处理——Transformer

自然语言处理——Transformer 自注意力机制多头注意力机制Transformer 虽然循环神经网络可以对具有序列特性的数据非常有效&#xff0c;它能挖掘数据中的时序信息以及语义信息&#xff0c;但是它有一个很大的缺陷——很难并行化。 我们可以考虑用CNN来替代RNN&#xff0c;但是…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...