【编程底层思考】详解Java内存模型(JMM)原理及其作用
Java内存模型(Java Memory Model, JMM)是Java虚拟机(JVM)的一个核心概念,它定义了Java程序中各种变量(线程共享变量)的访问规则,以及在并发环境下,为了确保数据的可见性、原子性和有序性,线程之间如何协作。
作用
- 确保数据的可见性:在多线程环境中,一个线程修改了共享变量的值,其他线程能够看到这个修改。
- 保证数据的原子性:复合操作(例如自增操作 i++)在多线程环境中被视为一个不可分割的步骤。
- 维护指令的有序性:在单线程程序中,代码的执行顺序是按照编写的顺序执行的,但在多线程环境中,为了提高性能,编译器和处理器可能会对指令进行重排序。
- 线程之间的协作:通过同步机制(如synchronized和volatile),线程可以协调对共享资源的访问。
原理
- 主内存与工作内存:JMM规定所有线程共享变量的值都存储在主内存中,每个线程有自己的工作内存,存储了该线程使用的变量的拷贝。线程对共享变量的所有操作都发生在工作内存中,然后同步回主内存。
- 内存屏障(Memory Barrier):为了保证操作的原子性,JMM提供了内存屏障机制。内存屏障会阻止屏障之前的所有操作在屏障之后的任何操作被执行,确保操作的顺序性。
- happens-before关系:JMM使用happens-before的概念来指定两个操作之间的顺序关系。如果一个操作happens-before另一个操作,那么第一个操作的执行结果将对第二个操作可见。
- volatile关键字:使用volatile关键字声明的变量可以保证每次访问都是从主内存中读取,保证了变量的可见性。同时,volatile变量的写操作也具有内存屏障的效果,防止指令重排序。
- 锁机制:synchronized关键字和Lock接口提供了锁机制,确保同一时刻只有一个线程可以执行特定代码段,从而保证原子性和可见性。
- final字段:被声明为final的字段,一旦被初始化赋值后,在其他线程中就能看到这个值,不需要特别的同步措施。
- 原子类:Java提供了一组原子类(如AtomicInteger和AtomicReference),它们利用CAS(Compare-And-Swap)操作来保证操作的原子性。
- 有序性:为了禁止编译器和处理器对代码进行重排序,Java提供了
@ Order注解,以及在代码中使用volatile和锁机制来保证执行的顺序性。
总结
JMM是Java并发编程的基石,它定义了多线程程序中共享变量的读写规则,确保了在并发环境下,程序的行为是可预测和一致的。通过理解JMM,开发者可以更好地编写出正确、高效的并发程序。
相关文章:
【编程底层思考】详解Java内存模型(JMM)原理及其作用
Java内存模型(Java Memory Model, JMM)是Java虚拟机(JVM)的一个核心概念,它定义了Java程序中各种变量(线程共享变量)的访问规则,以及在并发环境下,为了确保数据的可见性、…...
Docker的基本概念和优势
Docker是一个开源的容器化平台,它可以将应用程序及其所有依赖项和运行环境打包到一个称为容器的独立单元中。容器化使得应用程序在不同的环境中可以以相同的方式运行,并且更加轻量级和可移植。 Docker的基本概念包括以下几点: 镜像…...
数据结构————内核链表
内核链表是Linux内核中广泛使用的一种数据结构,它具有以下特点: 1.双向循环链表:每个节点包含两个指针,一个指向前驱节点(prev),另一个指向后继节点(next),…...
使用API接口获取某宝商品数据详情
什么是淘宝API接口? 淘宝API接口是淘宝开放平台为开发者提供的一种应用程序接口。它允许开发者通过编程方式,安全、高效地与淘宝平台进行数据交互,从而获取商品详细信息、用户信息、订单信息等多种数据。这些接口不仅简化了数据获取流程&…...
用Python实现时间序列模型实战——Day 15: 时间序列模型的选择与组合
一、学习内容 1. 模型选择的标准与方法(如 AIC、BIC) 在时间序列建模中,模型的选择是非常重要的,常用的模型选择标准包括 AIC (Akaike Information Criterion) 和 BIC (Bayesian Information Criterion)。 AIC (Akaike Informat…...
大数据之Flink(五)
15、Flink SQL 15.1、sql-client准备 启用Hadoop集群(在Hadoop100上) start-all.sh启用yarn-session模式 /export/soft/flink-1.13.0/bin/yarn-session.sh -d启动sql-client bin/sql-client.sh embedded -s yarn-sessionsql文件初始化 可以初始化模式、环境(流/批…...
SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析
查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但…...
基于 jenkins 的持续测试方案
CI/CD Continuous Integration; Continuous Deployment; 持续集成,将新代码和旧代码一起打包、构建;持续部署,将新构建的包进行部署;持续测试,将新代码、新单元测试一起测试;方案: 公有云DevO…...
我算见识到算法岗transformer面试的难度了
在面试算法岗的时候看到了这篇Transformer面试题,作者梳理一些关于Transformer的知识点,还会陆续更新最新的面试题和讲解答案! 也算是见识到了transformer的面试难度了 1.Transformer为何使用多头注意力机制?(为什么不使用一个头) 2.Tra…...
CommonCollections1
CommonCollections1链 CommonCollections1poc展示调用链分析AbstractInputCheckedMapDecoratorTransformedMapChainedTransformerConstantTransformerInvokerTransformer poc分析通过反射实现Runtime.getRuntime().exec("calc.exe")forNamegetMethodinvoke 依据反射构…...
6、关于Medical-Transformer
6、关于Medical-Transformer Axial-Attention原文链接:Axial-attention Medical-Transformer原文链接:Medical-Transformer Medical-Transformer实际上是Axial-Attention在医学领域的运行,只是在这基础上增加了门机制,实际上也就…...
19_单片机开发常用工具的使用
工欲善其事必先利其器,我们做单片机开发的时候,不管是调试电路还是调试程序,都需要借助一些辅助工具来帮助查找和定位问题,从而帮助我们顺利解决问题。没有任何辅助工具的单片机项目开发很可能就是无法完成的任务,不过…...
最新版微服务项目搭建
一,项目总体介绍 在本项目中,我将使用alibabba的 nacos 作为项目的注册中心,使用 spring cloud gateway 做为项目的网关,用 openfeign 作为服务间的调用组件。 项目总体架构图如下: 注意:我的Java环境是17…...
spring揭秘19-spring事务01-事务抽象
文章目录 【README】【1】事务基本元素【1.1】事务分类 【2】java事务管理【2.1】基于java的局部事务管理【2.2】基于java的分布式事务管理【2.2.1】基于JTA的分布式事务管理【2.2.2】基于JCA的分布式事务管理 【2.3】java事务管理的问题 【3】spring事务抽象概述【3.1】spring…...
基于Matlab的图像去雾系统(四种方法)关于图像去雾的基本算法代码的集合,方法包括局部直方图均衡法、全部直方图均衡法、暗通道先验法、Retinex增强。
基于Matlab的图像去雾系统(四种方法) 关于图像去雾的基本算法代码的集合,方法包括局部直方图均衡法、全部直方图均衡法、暗通道先验法、Retinex增强。 所有代码整合到App designer编写的GUI界面中,包括导入图片,保存处…...
油猴插件录制请求,封装接口自动化参数
参考:如何使用油猴插件提高测试工作效率 一、背景 在酷家乐设计工具测试中,总会有许多高频且较繁琐的工作,比如: 查询插件版本:需要打开Chrome控制台,输入好几个命令然后过滤出版本信息。 查询模型商品&…...
循环购模式!结合引流和复购于一体的商业模型!
欢迎各位朋友,我是你们的电商策略顾问吴军。今天,我将向大家介绍一种新颖的商业模式——循环购模式,它将如何改变我们的消费和收益方式。你是否好奇,为何商家会提供如此慷慨的优惠?消费一千元,不仅能够得到…...
Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧
Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用&…...
c中 int 和 unsigned int
c语言中,char、short、int、int64以及unsigned char、unsigned short、unsigned int、unsigned int64等等类型都可以表示整数。但是他们表示整数的位数不同,比如:char/unisigned char表示8位整数; short/unsigned short表示16位整…...
sheng的学习笔记-AI-话题模型(topic model),LDA模型,Unigram Model,pLSA Model
AI目录:sheng的学习笔记-AI目录-CSDN博客 基础知识 什么是话题模型(topic model) 话题模型(topic model)是一族生成式有向图模型,主要用于处理离散型的数据(如文本集合),在信息检索、自然语言处理等领域有广泛应用…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
基于Springboot+Vue的办公管理系统
角色: 管理员、员工 技术: 后端: SpringBoot, Vue2, MySQL, Mybatis-Plus 前端: Vue2, Element-UI, Axios, Echarts, Vue-Router 核心功能: 该办公管理系统是一个综合性的企业内部管理平台,旨在提升企业运营效率和员工管理水…...
【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
