chapter13-常用类——(章节小结)——day17
498-常用类阶段梳理










相关文章:
chapter13-常用类——(章节小结)——day17
498-常用类阶段梳理...
RTX AI PC 和工作站上部署多样化 AI 应用支持 Multi-LoRA
今天的大型语言模型(LLMs)在许多用例中都取得了前所未有的成果。然而,由于基础模型的通用性,应用程序开发者通常需要定制和调整这些模型,以便专门针对其用例开展工作。 完全微调需要大量数据和计算基础设施࿰…...
C++ STL-deque容器入门详解
1.1 deque容器基本概念 功能: 双端数组,可以对头端进行插入删除操作 deque与vector区别: vector对于头部的插入删除效率低,数据量越大,效率越低deque相对而言,对头部的插入删除速度回比vector快vector访…...
数据结构之折半查找
折半查找(Binary Search),也称为二分查找,是一种在有序数组中查找特定元素的搜索算法。其工作原理是,通过不断将待查找的区间分成两半,并判断待查找的元素可能存在于哪一半,然后继续在存在可能性…...
linux高级学习12
24.9.9学习目录 一.条件变量 一.条件变量 通常条件变量和互斥锁同时使用; 条件变量是用来阻塞线程,其本身并不是锁,直到达到特定的要求; (1)条件变量初始化 #include <pthread.h> int pthread_con…...
leetcode:3174 清除数字 使用栈,时间复杂度O(n)
3174 清除数字 题目链接 题目描述 给你一个字符串 s 。 你的任务是重复以下操作删除 所有 数字字符: 删除 第一个数字字符 以及它左边 最近 的 非数字 字符。 请你返回删除所有数字字符以后剩下的字符串。 示例 1: 输入:s "abc…...
神经网络卷积操作
文章目录 一、nn.Conv2d二、卷积操作原理三、代码实现卷积操作 一、nn.Conv2d nn.Conv2d 是 PyTorch 中的一个类,它代表了一个二维卷积层,通常用于处理图像数据。在深度学习和计算机视觉中,卷积层是构建卷积神经网络(CNN…...
专题二_滑动窗口_算法专题详细总结
目录 滑动窗口,引入: 滑动窗口,本质:就是同向双指针; 1.⻓度最⼩的⼦数组(medium) 1.解析:给我们一个数组nums,要我们找出最小子数组的和target,首先想到的…...
【机器学习-三-无监督学习】
无监督学习 什么是无监督学习分类聚类降维 有监督和无监督学习的区别 上一节介绍了监督学习,下面来介绍无监督学习,这也是最广泛应用的算法。 什么是无监督学习 上一节中,我们知道了监督学习是通过 对算法,**输入一对数据&#x…...
JAVA基础:Lambda表达式(上)
前言 Lambda表达式是jdk1.8的一个新特性,他属于一种语法堂主要作用是对匿名内部类语法简化 lambda基本应用 lambda表达式想要优化匿名内部类是有前提条件,首先必须是一个接口,而且要求接口中只能有1个抽象方法,称之为函数式接口…...
Vue使用fetch获取本地数据
(1)使用get test.json文件 { "list":[111,222,333] } <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initi…...
《酒饮真经》秘籍4,让你的酒场技巧更上一层楼!
在酒桌这一独特的舞台上,每个人都扮演着不同的角色,或攻或守,尽显智慧与风度。对于不擅长喝酒的人来说,如何在推杯换盏间既保护自己又不失礼节,是值得我们仔细研究的。下面是酱酒亮哥为您整理的一系列实用的酒桌攻防秘…...
回车符与快捷键记录
一.在Windows和Linux操作系统中,回车符(或称为换行符)的处理方式区别 1.Windows下的回车符 在Windows系统中,回车符通常是由两个字符组成的序列:回车符(Carriage Return,简称CR,AS…...
计算机网络-VRRP工作原理
一、VRRP工作原理 前面我们大概了解了VRRP的一些基础概念,现在开始学习VRRP的技术原理。VRRP的选举及工作步骤: 确定网关地址 选举主备 主设备发送VRRP报文通知Backup设备 主设备响应终端ARP并维持在Master状态 终端正常发送报文到网关进行转发 因为我们…...
6.5椒盐噪声
在OpenCV中联合C给一张图片加上椒盐噪声(Salt and Pepper Noise)可以通过随机选择像素点并将其置为黑色(0)或白色(255)来实现。椒盐噪声是一种随机噪声,通常表现为图像中的孤立黑点(…...
CSS样式的引用方式以及选择器使用
1. CSS 引用方式 CSS 可以通过三种方式引用到 HTML 文件中: 行内样式(Inline Styles):直接在 HTML 元素中定义样式。内部样式表(Internal CSS):在 HTML 文档的 <head> 部分使用 <sty…...
Python Flask_APScheduler定时任务的正确(最佳)使用
描述 APScheduler基于Quartz的一个Python定时任务框架,实现了Quartz的所有功能。最近使用Flask框架使用Flask_APScheduler来做定时任务,在使用过程当中也遇到很多问题,例如在定时任务调用的方法中需要用到flask的app.app_context()时&#…...
Linux命名管道
通信的前提是让不同的进程看到同一份资源,因为路径是具有唯一性的,所以我们可以使用路径文件名来唯一的让不同进程看到同一份资源,实现没有血缘关系的两个进程进行管道通信 1.指令级 mkfifio(FILENAME,0666) …...
Xinstall助力App全渠道统计,参数传递下载提升用户体验!
在移动互联网时代,App已成为我们日常生活中不可或缺的一部分。然而,对于App开发者来说,如何有效地推广和运营自己的应用,却是一个不小的挑战。尤其是在面对众多渠道、复杂的数据统计和用户需求多样化的情况下,如何精准…...
【时时三省】(C语言基础)指针进阶 例题4
山不在高,有仙则名。水不在深,有龙则灵。 ----CSDN 时时三省 strlen是求字符串长度 这个需要算上\0 第一个arr 是打印6 因为它加上\0是有六个元素 第二个arr0 数组名相当于首元素的地址 a的地址加0还是a的地址 所以这个地方还是…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
【Java_EE】Spring MVC
目录 Spring Web MVC 编辑注解 RestController RequestMapping RequestParam RequestParam RequestBody PathVariable RequestPart 参数传递 注意事项 编辑参数重命名 RequestParam 编辑编辑传递集合 RequestParam 传递JSON数据 编辑RequestBody …...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:
根据万维钢精英日课6的内容,使用AI(2025)可以参考以下方法: 四个洞见 模型已经比人聪明:以ChatGPT o3为代表的AI非常强大,能运用高级理论解释道理、引用最新学术论文,生成对顶尖科学家都有用的…...
Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)
在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马(服务器方面的)的原理,连接,以及各种木马及连接工具的分享 文件木马:https://w…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...
