当前位置: 首页 > news >正文

NLTK:一个强大的自然语言处理处理Python库

我是东哥,一名热爱技术的自媒体创作者。今天,我将为大家介绍一个非常有趣且强大的Python库——NLTK。无论你是刚刚接触Python的小白,还是对自然语言处理(NLP)有些许了解的朋友,NLTK都是一个值得学习的工具。

基本介绍

NLTK,全称Natural Language Toolkit,即自然语言处理工具包。它是一个用于构建Python程序以处理人类语言数据的平台。NLTK库包含了大量的语料库、词汇资源、分类器、语法分析器等,可以帮助我们进行文本分类、词性标注、命名实体识别、情感分析等各种自然语言处理任务。

项目地址:https://github.com/nltk/nltk

NLTK主页

安装方法

安装NLTK非常简单,只需打开你的命令行工具,输入以下命令即可:

pip install nltk

安装完成后,你可以通过以下代码来下载NLTK的数据包,这些数据包包含了多种语料库和模型,是进行NLP任务的基础:

import nltknltk.download('all')

基本用法

让我们先从一些基础的例子开始,逐步揭开NLTK的神秘面纱。

案例1:分词

from nltk.tokenize import word_tokenize# 示例文本
text = "Hello, how are you doing today?"
# 使用NLTK进行分词
tokens = word_tokenize(text)
print(tokens)

输出将会是文本被分割成单词和标点的列表,如下:

['Hello', ',', 'how', 'are', 'you', 'doing', 'today', '?']

案例2:词性标注

import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag# 示例文本
text = "The quick brown fox jumps over the lazy dog."
# 分词
tokens = word_tokenize(text)
# 词性标注
tagged_tokens = pos_tag(tokens)
print(tagged_tokens)

这里,我们会得到每个单词及其对应的词性标签,如下:

[('The', 'DT'), ('quick', 'JJ'), ('brown', 'NN'), ('fox', 'NN'), ('jumps', 'VBZ'), ('over', 'IN'), ('the', 'DT'), ('lazy', 'JJ'), ('dog', 'NN'), ('.', '.')]

高级用法

掌握了基本用法后,让我们来看看NLTK的一些高级功能。

案例3:情感分析

import nltk
from nltk.sentiment import SentimentIntensityAnalyzer
# 初始化情感分析器
sia = SentimentIntensityAnalyzer()
# 示例文本
text = "NLTK is amazing and I love using it for natural language processing."
# 进行情感分析
sentiment_score = sia.polarity_scores(text)
print(sentiment_score)

这个案例会输出一个字典,包含文本的负面、中性、正面和综合情绪分数,如下:

{'neg': 0.0, 'neu': 0.432, 'pos': 0.568, 'compound': 0.8885}

案例4:文本分类

import nltk
from nltk.corpus import movie_reviews
from nltk.classify import NaiveBayesClassifier
from nltk.classify.util import accuracy
# 准备数据
documents = [(list(movie_reviews.words(fileid)), category)for category in movie_reviews.categories()for fileid in movie_reviews.fileids(category)]
# 特征提取函数
def document_features(document):document_words = set(document)features = {}for word in word_features:features['contains({})'.format(word)] = (word in document_words)return features
# 选择常用的1000个词作为特征
all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words())
word_features = list(all_words)[:2000]
# 特征化处理
featuresets = [(document_features(d), c) for (d,c) in documents]
# 划分训练集和测试集
train_set, test_set = featuresets[100:], featuresets[:100]
# 训练分类器
classifier = NaiveBayesClassifier.train(train_set)
# 测试分类器准确性
print(accuracy(classifier, test_set))

这个案例展示了如何使用NLTK进行简单的文本分类,虽然代码较长,但通过注释我们可以清晰地理解每一步的操作。输出如下:

0.86

小结

NLTK是一个功能强大的自然语言处理库,它简化了文本分析的流程,使得初学者也能快速上手。无论你是自然语言处理的新手还是有经验的研究者,NLTK都能成为你的得力助手。

希望这篇文章能让你对NLTK有一个基本的了解,并激发你探索更多可能。如果你有任何问题或想要深入探讨NLTK的其他功能,请随时留言。

东哥说AI后台回复008获取文中完整代码~

相关文章:

NLTK:一个强大的自然语言处理处理Python库

我是东哥,一名热爱技术的自媒体创作者。今天,我将为大家介绍一个非常有趣且强大的Python库——NLTK。无论你是刚刚接触Python的小白,还是对自然语言处理(NLP)有些许了解的朋友,NLTK都是一个值得学习的工具。…...

NUUO网络视频录像机 css_parser.php 任意文件读取漏洞复现

0x01 产品简介 NUUO网络视频录像机(Network Video Recorder,简称NVR)是NUUO Inc.生产的一种专业视频监控设备,它广泛应用于零售、交通、教育、政府和银行等多个领域。能够同时管理多个IP摄像头,实现视频录制、存储、回放及远程监控等功能。它采用先进的视频处理技术,提供…...

【支付】Stripe支付通道Java对接(产品 价格 支付 查询 退款 回调)

Stripe是一家美国科技公司,成立于2010年,由爱尔兰兄弟Patrick Collison和John Collison共同创立。该公司致力于提供高效、简洁的互联网支付收款服务,为开发者或商家提供支付API接口或代码,使商家的网站、移动APP支持信用卡付款。S…...

Unity3D 小案例 像素贪吃蛇 01 蛇的移动

Unity3D 小案例 像素贪吃蛇 第一期 蛇的移动 像素贪吃蛇 今天来简单制作一个小案例,经典的像素贪吃蛇。 准备 首先调整一下相机的设置,这里使用灰色的纯色背景,正交视图。 接着,创建一个正方形,保存为预制体&#…...

【STM32 MCU】stm32MCUs 32-bit Arm Cortex-M

stm32MCUs 32-bit Arm Cortex-M...

html+css网页设计 旅游 雪花旅行社5个页面

htmlcss网页设计 旅游 雪花旅行社5个页面 网页作品代码简单,可使用任意HTML辑软件(如:Dreamweaver、HBuilder、Vscode 、Sublime 、Webstorm、Text 、Notepad 等任意html编辑软件进行运行及修改编辑等操作)。 获取源码 1&#…...

vue3中的实例

实例类型 Vue2:每个Vue应用都是new Vue创建的一个新实例,创建的时候将data作为property添加到响应式系统中 vue3:createApp创建一个Application Instance、应用实例用来注册全局内容,大多数方法支持链式调用,返回实例…...

9.测试计划(包含笔试/面试题)

一、软件测试计划介绍 1.测试计划就是一份测试文档,一份描述测试工作计划的文档,对测试计划进行统筹安排。 2.测试计划的编写者就是测试组长,测试主管。 3.测试计划的查阅者:测试人员,测试主管,产品&#x…...

这 7 款AI应用将让你全新的iPhone 16成为电影制作的强大工具

苹果公司在周一的Glowtime发布会上揭晓了新款的iPhone 16 Pro系列。除了新加入的苹果智能功能和令人印象深刻的硬件升级外,它还获得了一套视频制作工具,让用户能够在一个几乎可以放进口袋的设备上制作整部电影。 这些升级中有一个48MP融合相机。它具有2…...

自注意力机制(self-attention)

自注意力机制(self-attention) 之前听过吴恩达老师的课,吴恩达老师CNN那一块讲的特别好,但是后面RNN这一部分我听的不是很明白,今天有看了李宏毅老师attention这部分的课,总结一下笔记。 self-attention …...

Nuxt3入门:过渡效果(第5节)

你好同学&#xff0c;我是沐爸&#xff0c;欢迎点赞、收藏、评论和关注。 Nuxt 利用 Vue 的 <Transition> 组件在页面和布局之间应用过渡效果。 一、页面过渡效果 你可以启用页面过渡效果&#xff0c;以便对所有页面应用自动过渡效果。 nuxt.config.js export defaul…...

【开发工具】IntelliJ IDEA插件推荐:Json Helper——让JSON处理更高效

导语&#xff1a;在Java开发过程中&#xff0c;JSON作为一种轻量级的数据交换格式&#xff0c;被广泛应用于前后端数据交互。今天&#xff0c;我要为大家介绍一款IntelliJ IDEA插件——Json Helper&#xff0c;帮助开发者更高效地处理JSON数据。 一、什么是Json Helper&#x…...

Lua垃圾回收机制

Lua垃圾回收机制 在 Lua 中&#xff0c;一共只有8种数据类型&#xff0c;分别为 nil 、boolean 、userdata 、number 、string 、 table 、 function 、 userdata 和 thread 。其中&#xff0c;只有 string table function thread 四种是以引用方式共享&#xff0c;是需要被 G…...

Java学习路线:详细指引

Java学习路线可以分为几个阶段&#xff0c;每个阶段都有其重点和推荐学习的内容。下面我将按照初学者、进阶和高级三个阶段来举例说明&#xff1a; 初学者阶段 目标&#xff1a; 熟悉Java基础语法理解面向对象编程掌握基本数据类型和数据结构学会使用IDE&#xff08;如Intel…...

商家转账到零钱如何开通-微信支付

商家转账到零钱是微信支付的一项实用功能&#xff0c;允许商户将资金从商户号余额直接转账到用户的微信零钱。我们以上万次成功申请的经验整理了本文的详细的步骤和建议以帮助商户可以快速开通该功能。 1. 准备工作 - 确认申请资格&#xff1a;只有公司性质的商户可以申请此功能…...

自研商家如何快速接入电商平台订单数据?

随着电子商务行业的快速发展&#xff0c;越来越多的商家开始寻求高效的订单管理和数据整合方案。对于那些自研系统的商家来说&#xff0c;如何实现与各大电商平台之间的无缝对接&#xff0c;成为了一项重要挑战。点三电商API正是为此类需求量身打造&#xff0c;为商家提供了一站…...

Win10下借助CMake编译OpenMVS

笔者在编译OpenMVS的过程十分曲折。刚开始借助CMake编译,能够把与库生成相关的工程编译出来,但是与可执行文件相关的工程会报错;后来参考官方教程借助VCPKG编译,发现VCPKG并没有想中强大、好用,最终也是遇到了各种问题没有编译成功。但是,笔者在解决问题的过程发现了问题…...

04_定时器与数码管基础

通过上节课的实验&#xff0c;大家会发现&#xff0c;我们逐渐进入比较实质性的学习了&#xff0c;需要记住的内容也更多了&#xff0c;个别地方可能会感觉吃力。但是大家不要担心&#xff0c;要有信心。这个跟小孩学走路一样&#xff0c;刚开始走得不太稳&#xff0c;没关系&a…...

Python 数学建模——方差分析

文章目录 前言单因素方差分析原理核心代码 双因素方差分析数学模型分析依据典型代码 前言 方差分析也是概率论中非常重要的内容&#xff0c;有时数学建模需要用到。方差分析是干什么的&#xff1f;如果说假设检验用于分析两个总体之间的均值 μ 1 , μ 2 \mu_1,\mu_2 μ1​,μ…...

计算机视觉中,什么是上下文信息(contextual information)?

在计算机视觉中&#xff0c;上下文信息&#xff08;contextual information&#xff09;是指一个像素或一个小区域周围的环境或背景信息&#xff0c;它帮助模型理解图像中对象的相对位置、大小、形状&#xff0c;以及与其他对象的关系。上下文信息在图像中提供了全局的语义和结…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad&#xff08;Adaptive Gradient Algorithm&#xff09;是一种自适应学习率的优化算法&#xff0c;由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率&#xff0c;适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局&#xff1a;PCB行业的时代之问 在数字经济蓬勃发展的浪潮中&#xff0c;PCB&#xff08;印制电路板&#xff09;作为 “电子产品之母”&#xff0c;其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透&#xff0c;PCB行业面临着前所未有的挑战与机遇。产品迭代…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

IT供电系统绝缘监测及故障定位解决方案

随着新能源的快速发展&#xff0c;光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域&#xff0c;IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选&#xff0c;但在长期运行中&#xff0c;例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...