当前位置: 首页 > news >正文

60. n 个骰子的点数【难】


comments: true
difficulty: 简单
edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9860.%20n%E4%B8%AA%E9%AA%B0%E5%AD%90%E7%9A%84%E7%82%B9%E6%95%B0/README.md

面试题 60. n 个骰子的点数

题目描述

把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。

 

你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

 

示例 1:

输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]

示例 2:

输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]

 

限制:

1 <= n <= 11

解法

1.题目不太好理解,可以先看这个题:https://www.acwing.com/problem/content/76/
2.促进一点理解的题解:https://leetcode.cn/problems/nge-tou-zi-de-dian-shu-lcof/solutions/637778/jian-zhi-offer-60-n-ge-tou-zi-de-dian-sh-z36d/

方法一:动态规划

我们定义 f [ i ] [ j ] f[i][j] f[i][j] 表示投掷 i i i 个骰子,点数和为 j j j 的方案数。那么我们可以写出状态转移方程:

f [ i ] [ j ] = ∑ k = 1 6 f [ i − 1 ] [ j − k ] f[i][j] = \sum_{k=1}^6 f[i-1][j-k] f[i][j]=k=16f[i1][jk]

其中 k k k 表示当前骰子的点数,而 f [ i − 1 ] [ j − k ] f[i-1][j-k] f[i1][jk] 表示投掷 i − 1 i-1 i1 个骰子,点数和为 j − k j-k jk 的方案数。

初始条件为 f [ 1 ] [ j ] = 1 f[1][j] = 1 f[1][j]=1,表示投掷一个骰子,点数和为 j j j 的方案数为 1 1 1

最终,我们要求的答案即为 f [ n ] [ j ] 6 n \frac{f[n][j]}{6^n} 6nf[n][j],其中 n n n 为骰子个数,而 j j j 的取值范围为 [ n , 6 n ] [n, 6n] [n,6n]

时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( 6 n ) O(6n) O(6n)。其中 n n n 为骰子个数。

Python3
class Solution:def dicesProbability(self, n: int) -> List[float]:f = [[0] * (6 * n + 1) for _ in range(n + 1)] #最大情况:投掷n个骰子,最大和为6nfor j in range(1, 7):f[1][j] = 1 #投掷1个骰子,各个和的方案数都是1for i in range(2, n + 1):for j in range(i, 6 * i + 1): #1)投掷i个筛子,和的范围为[i,6*i]for k in range(1, 7): #2)核心递推:方案数的累加if j - k >= 0:f[i][j] += f[i - 1][j - k]m = pow(6, n) #3)n个骰子的总方案数return [f[n][j] / m for j in range(n, 6 * n + 1)]
Java
class Solution {public double[] dicesProbability(int n) {int[][] f = new int[n + 1][6 * n + 1];for (int j = 1; j <= 6; ++j) {f[1][j] = 1;}for (int i = 2; i <= n; ++i) {for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j >= k) {f[i][j] += f[i - 1][j - k];}}}}double m = Math.pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[n][j] / m;}return ans;}
}
C++
class Solution {
public:vector<double> dicesProbability(int n) {int f[n + 1][6 * n + 1];memset(f, 0, sizeof f);for (int j = 1; j <= 6; ++j) {f[1][j] = 1;}for (int i = 2; i <= n; ++i) {for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j >= k) {f[i][j] += f[i - 1][j - k];}}}}vector<double> ans;double m = pow(6, n);for (int j = n; j <= 6 * n; ++j) {ans.push_back(f[n][j] / m);}return ans;}
};
Go
func dicesProbability(n int) (ans []float64) {f := make([][]int, n+1)for i := range f {f[i] = make([]int, 6*n+1)}for j := 1; j <= 6; j++ {f[1][j] = 1}for i := 2; i <= n; i++ {for j := i; j <= 6*i; j++ {for k := 1; k <= 6; k++ {if j >= k {f[i][j] += f[i-1][j-k]}}}}m := math.Pow(6, float64(n))for j := n; j <= 6*n; j++ {ans = append(ans, float64(f[n][j])/m)}return
}
JavaScript
/*** @param {number} n* @return {number[]}*/
var dicesProbability = function (n) {const f = Array.from({ length: n + 1 }, () => Array(6 * n + 1).fill(0));for (let j = 1; j <= 6; ++j) {f[1][j] = 1;}for (let i = 2; i <= n; ++i) {for (let j = i; j <= 6 * i; ++j) {for (let k = 1; k <= 6; ++k) {if (j >= k) {f[i][j] += f[i - 1][j - k];}}}}const ans = [];const m = Math.pow(6, n);for (let j = n; j <= 6 * n; ++j) {ans.push(f[n][j] / m);}return ans;
};
C#
public class Solution {public double[] DicesProbability(int n) {int[,] f = new int[n + 1, 6 * n + 1];for (int j = 1; j <= 6; ++j) {f[1, j] = 1;}for (int i = 2; i <= n; ++i) {for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j >= k) {f[i, j] += f[i - 1, j - k];}}}}double m = Math.Pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[n, j] / m;}return ans;}
}
Swift
class Solution {func dicesProbability(_ n: Int) -> [Double] {var f = Array(repeating: Array(repeating: 0, count: 6 * n + 1), count: n + 1)for j in 1...6 {f[1][j] = 1}if n > 1 {for i in 2...n {for j in i...(6 * i) {for k in 1...6 {if j >= k {f[i][j] += f[i - 1][j - k]}}}}}var m = 1.0for _ in 0..<n {m *= 6.0}var ans = Array(repeating: 0.0, count: 5 * n + 1)for j in n...(6 * n) {ans[j - n] = Double(f[n][j]) / m}return ans}
}

方法二:动态规划(空间优化)

我们可以发现,上述方法中的 f [ i ] [ j ] f[i][j] f[i][j] 的值仅与 f [ i − 1 ] [ j − k ] f[i-1][j-k] f[i1][jk] 有关,因此我们可以使用滚动数组的方式,将空间复杂度优化至 O ( 6 n ) O(6n) O(6n)

Python3
class Solution:def dicesProbability(self, n: int) -> List[float]:f = [0] + [1] * 6for i in range(2, n + 1):g = [0] * (6 * i + 1)for j in range(i, 6 * i + 1):for k in range(1, 7):if 0 <= j - k < len(f):g[j] += f[j - k]  #仅仅与投掷n-1个骰子的方案数 数组有关f = gm = pow(6, n)return [f[j] / m for j in range(n, 6 * n + 1)]
Java
class Solution {public double[] dicesProbability(int n) {int[] f = new int[7];Arrays.fill(f, 1);f[0] = 0;for (int i = 2; i <= n; ++i) {int[] g = new int[6 * i + 1];for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j - k >= 0 && j - k < f.length) {g[j] += f[j - k];}}}f = g;}double m = Math.pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[j] / m;}return ans;}
}
Go
func dicesProbability(n int) (ans []float64) {f := make([]int, 7)for i := 1; i <= 6; i++ {f[i] = 1}for i := 2; i <= n; i++ {g := make([]int, 6*i+1)for j := i; j <= 6*i; j++ {for k := 1; k <= 6; k++ {if j-k >= 0 && j-k < len(f) {g[j] += f[j-k]}}}f = g}m := math.Pow(6, float64(n))for j := n; j <= 6*n; j++ {ans = append(ans, float64(f[j])/m)}return
}
JavaScript
/*** @param {number} num* @return {number[]}*/
var dicesProbability = function (n) {let f = Array(7).fill(1);f[0] = 0;for (let i = 2; i <= n; ++i) {let g = Array(6 * i + 1).fill(0);for (let j = i; j <= 6 * i; ++j) {for (let k = 1; k <= 6; ++k) {if (j - k >= 0 && j - k < f.length) {g[j] += f[j - k];}}}f = g;}const ans = [];const m = Math.pow(6, n);for (let j = n; j <= 6 * n; ++j) {ans.push(f[j] / m);}return ans;
};
C#
public class Solution {public double[] DicesProbability(int n) {int[] f = new int[7];for (int i = 1; i <= 6; ++i) {f[i] = 1;}f[0] = 0;for (int i = 2; i <= n; ++i) {int[] g = new int[6 * i + 1];for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j - k >= 0 && j - k < f.Length) {g[j] += f[j - k];}}}f = g;}double m = Math.Pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[j] / m;}return ans;}
}

相关文章:

60. n 个骰子的点数【难】

comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9860.%20n%E4%B8%AA%E9%AA%B0%E5%AD%90%E7%9A%84%E7%82%B9%E6%95%B0/README.md 面试题 60. n 个骰子的点数 题目描述 把n个骰子扔在地上&#xff0c;所…...

高性能编程:无锁队列

目录 1. 无锁队列 1.1 无锁 1.1.1 阻塞&#xff08;Blocking&#xff09; 1.1.2 无锁&#xff08;Lock-Free&#xff09; 1.1.3 无等待&#xff08;Wait-Free&#xff09; 1.2 队列 1.2.1 链表实现的队列 1.2.2 数组实现的队列 1.2.3 混合实现的队列 1.3 多线程中的先…...

word标题排序编号错误

1.问题&#xff1a;word中有时会出现当前编号是2.1、3.1、4.1&#xff0c;下级编号却从1.1.1开始的情况&#xff0c;类似情况如下&#xff1a; 2.原因&#xff1a;此问题多为编号4.1、4.2和编号4.1.1使用的多级编号模板不一样&#xff0c;可以选中4.2&#xff0c;看下使用的多级…...

力扣---80. 删除有序数组中的重复项 II

给你一个有序数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次 &#xff0c;返回删除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。 说明&…...

一篇文章,讲清SQL的 joins 语法

SQL 中的不同 JOIN 类型&#xff1a; 1. &#xff08;INNER&#xff09;JOIN&#xff08;内连接&#xff09;&#xff1a;返回两个表中具有匹配值的记录。 2. LEFT&#xff08;OUTER&#xff09;JOIN&#xff08;左外连接&#xff09;&#xff1a;返回左表中的所有记录&#…...

设计模式之建造者模式(通俗易懂--代码辅助理解【Java版】)

文章目录 设计模式概述1、建造者模式2、建造者模式使用场景3、优点4、缺点5、主要角色6、代码示例&#xff1a;1&#xff09;实现要求2&#xff09;UML图3)实现步骤&#xff1a;1&#xff09;创建一个表示食物条目和食物包装的接口2&#xff09;创建实现Packing接口的实体类3&a…...

文生视频算法

文生视频 Sora解决问题&#xff1a;解决思路&#xff1a; CogVideoX解决问题&#xff1a;解决思路&#xff1a; Stable Video Diffusion&#xff08;SVD&#xff09;解决问题&#xff1a;解决思路&#xff1a; 主流AI视频技术框架&#xff1a; Sora Sora: A Review on Backg…...

LoRA: Low-Rank Adaptation Abstract

LoRA: Low-Rank Adaptation Abstract LoRA 论文的摘要介绍了一种用于减少大规模预训练模型微调过程中可训练参数数量和内存需求的方法&#xff0c;例如拥有1750亿参数的GPT-3。LoRA 通过冻结模型权重并引入可训练的低秩分解矩阵&#xff0c;减少了10,000倍的可训练参数&#xf…...

正点原子阿尔法ARM开发板-IMX6ULL(二)——介绍情况以及汇编

文章目录 一、裸机开发&#xff08;21个&#xff09;二、嵌入式Linux驱动例程三、汇编3.1 处理器内部数据传输指令3.2 存储器访问指令3.3 压栈和出栈指令3.4 跳转指令3.5 算术运算指令3.6 逻辑运算指令 一、裸机开发&#xff08;21个&#xff09; 二、嵌入式Linux驱动例程 三、…...

Unreal Engine——AI生成高精度的虚拟人物和环境(虚拟世界构建、电影场景生成)(一)

一、Unreal Engine 介绍 Unreal Engine&#xff08;虚幻引擎&#xff09;是由Epic Games开发的强大3D游戏开发引擎&#xff0c;自1998年首次发布以来&#xff0c;已经历了多个版本的迭代。虚幻引擎主要用于制作高品质的3D游戏&#xff0c;但也广泛用于电影、建筑、仿真等其他领…...

Emlog程序屏蔽用户IP拉黑名单插件

插件介绍 在很多时候我们需要得到用户的真实IP地址&#xff0c;例如&#xff0c;日志记录&#xff0c;地理定位&#xff0c;将用户信息&#xff0c;网站数据分析等,其实获取IP地址很简单&#xff0c;感兴趣的可以参考一下。 今天给大家带来舍力写的emlog插件&#xff1a;屏蔽…...

发送成绩的app或小程序推荐

老师们&#xff0c;新学期的第一次月考马上开始&#xff0c;是不是还在为如何高效、便捷地发布成绩而头疼呢&#xff1f;别担心&#xff0c;都2024年了&#xff0c;我们有更智能的方式来解决这个问题&#xff01; 给大家安利一个超级实用的工具——易查分小程序。这个小程序简…...

51单片机-AT24C02(IIC总线介绍及其时序编写步骤)-第一节(下一节实战)

IIC开始通信&#xff08;6大步&#xff09; 我以前的文章也有对基本常用的通信协议讲解&#xff0c;如SPI UART IIC RS232 RS485 CAN的讲解&#xff0c;可前往主页查询&#xff0c;&#xff08;2024.9.12,晚上20&#xff1a;53&#xff0c;将AT24C02存储芯片&#xff0c;掉电不…...

<<编码>> 第 11 章 逻辑门电路--或非门, 与非门, 缓冲器 示例电路

继电器或非门 info::操作说明 鼠标单击开关切换开合状态 闭合任意一个开关可使电路断开 primary::在线交互操作链接 https://cc.xiaogd.net/?startCircuitLinkhttps://book.xiaogd.net/code-hlchs-examples/assets/circuit/code-hlchs-ch11-19-nor-gate-by-relay.txt 或非门 i…...

股票api接口程序化报备,程序化交易监管对个人量化交易者有何影响

炒股自动化&#xff1a;申请官方API接口&#xff0c;散户也可以 python炒股自动化&#xff08;0&#xff09;&#xff0c;申请券商API接口 python炒股自动化&#xff08;1&#xff09;&#xff0c;量化交易接口区别 Python炒股自动化&#xff08;2&#xff09;&#xff1a;获取…...

如何自己搭建一个网站?

今天的文章总结适合0基础&#xff0c;网站搭建的技巧和流程&#xff0c;哪怕你是小白&#xff0c;不会编程&#xff0c;也可以制作非常漂亮且实用的企业网站&#xff0c;如果想做个人博客更是不在话下。希望我的经验能帮助更多没有过多的经费、没有建站基础的朋友。用户跟着我的…...

虚拟化数据恢复—断电导致虚拟机目录项被破坏的数据恢复案例

虚拟化数据恢复环境&#xff1a; 某品牌服务器&#xff08;部署VMware EXSI虚拟机&#xff09;同品牌存储&#xff08;存放虚拟机文件&#xff09;。 虚拟化故障&#xff1a; 意外断电导致服务器上某台虚拟机无法正常启动。查看虚拟机配置文件发现这台故障虚拟机除了磁盘文件以…...

[机器学习]聚类算法

1 聚类算法简介 # 导包 from sklearn.datasets import make_blobs import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import calinski_harabasz_score # 构建数据 x,ymake_blobs(n_samples1000,n_features2,centers[[-1,-1],[0,0],[1…...

JVM面试真题总结(七)

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 解释GC的引用计数算法及其局限性 引用计数算法是一种非常直观、简…...

深入理解CASAtomic原子操作类详解

1.CAS介绍 什么是 CAS CAS&#xff08;Compare And Swap&#xff0c;比较与交换&#xff09;&#xff0c;是非阻塞同步的实现原理&#xff0c;它是CPU硬件层面的一种指令&#xff0c;从CPU层面能保证"比较与交换"两个操作的原子性。CAS指令操作包括三个参数&#x…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

实现弹窗随键盘上移居中

实现弹窗随键盘上移的核心思路 在Android中&#xff0c;可以通过监听键盘的显示和隐藏事件&#xff0c;动态调整弹窗的位置。关键点在于获取键盘高度&#xff0c;并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

FFmpeg:Windows系统小白安装及其使用

一、安装 1.访问官网 Download FFmpeg 2.点击版本目录 3.选择版本点击安装 注意这里选择的是【release buids】&#xff0c;注意左上角标题 例如我安装在目录 F:\FFmpeg 4.解压 5.添加环境变量 把你解压后的bin目录&#xff08;即exe所在文件夹&#xff09;加入系统变量…...

苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会

在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...