当前位置: 首页 > news >正文

60. n 个骰子的点数【难】


comments: true
difficulty: 简单
edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9860.%20n%E4%B8%AA%E9%AA%B0%E5%AD%90%E7%9A%84%E7%82%B9%E6%95%B0/README.md

面试题 60. n 个骰子的点数

题目描述

把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。

 

你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。

 

示例 1:

输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]

示例 2:

输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]

 

限制:

1 <= n <= 11

解法

1.题目不太好理解,可以先看这个题:https://www.acwing.com/problem/content/76/
2.促进一点理解的题解:https://leetcode.cn/problems/nge-tou-zi-de-dian-shu-lcof/solutions/637778/jian-zhi-offer-60-n-ge-tou-zi-de-dian-sh-z36d/

方法一:动态规划

我们定义 f [ i ] [ j ] f[i][j] f[i][j] 表示投掷 i i i 个骰子,点数和为 j j j 的方案数。那么我们可以写出状态转移方程:

f [ i ] [ j ] = ∑ k = 1 6 f [ i − 1 ] [ j − k ] f[i][j] = \sum_{k=1}^6 f[i-1][j-k] f[i][j]=k=16f[i1][jk]

其中 k k k 表示当前骰子的点数,而 f [ i − 1 ] [ j − k ] f[i-1][j-k] f[i1][jk] 表示投掷 i − 1 i-1 i1 个骰子,点数和为 j − k j-k jk 的方案数。

初始条件为 f [ 1 ] [ j ] = 1 f[1][j] = 1 f[1][j]=1,表示投掷一个骰子,点数和为 j j j 的方案数为 1 1 1

最终,我们要求的答案即为 f [ n ] [ j ] 6 n \frac{f[n][j]}{6^n} 6nf[n][j],其中 n n n 为骰子个数,而 j j j 的取值范围为 [ n , 6 n ] [n, 6n] [n,6n]

时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( 6 n ) O(6n) O(6n)。其中 n n n 为骰子个数。

Python3
class Solution:def dicesProbability(self, n: int) -> List[float]:f = [[0] * (6 * n + 1) for _ in range(n + 1)] #最大情况:投掷n个骰子,最大和为6nfor j in range(1, 7):f[1][j] = 1 #投掷1个骰子,各个和的方案数都是1for i in range(2, n + 1):for j in range(i, 6 * i + 1): #1)投掷i个筛子,和的范围为[i,6*i]for k in range(1, 7): #2)核心递推:方案数的累加if j - k >= 0:f[i][j] += f[i - 1][j - k]m = pow(6, n) #3)n个骰子的总方案数return [f[n][j] / m for j in range(n, 6 * n + 1)]
Java
class Solution {public double[] dicesProbability(int n) {int[][] f = new int[n + 1][6 * n + 1];for (int j = 1; j <= 6; ++j) {f[1][j] = 1;}for (int i = 2; i <= n; ++i) {for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j >= k) {f[i][j] += f[i - 1][j - k];}}}}double m = Math.pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[n][j] / m;}return ans;}
}
C++
class Solution {
public:vector<double> dicesProbability(int n) {int f[n + 1][6 * n + 1];memset(f, 0, sizeof f);for (int j = 1; j <= 6; ++j) {f[1][j] = 1;}for (int i = 2; i <= n; ++i) {for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j >= k) {f[i][j] += f[i - 1][j - k];}}}}vector<double> ans;double m = pow(6, n);for (int j = n; j <= 6 * n; ++j) {ans.push_back(f[n][j] / m);}return ans;}
};
Go
func dicesProbability(n int) (ans []float64) {f := make([][]int, n+1)for i := range f {f[i] = make([]int, 6*n+1)}for j := 1; j <= 6; j++ {f[1][j] = 1}for i := 2; i <= n; i++ {for j := i; j <= 6*i; j++ {for k := 1; k <= 6; k++ {if j >= k {f[i][j] += f[i-1][j-k]}}}}m := math.Pow(6, float64(n))for j := n; j <= 6*n; j++ {ans = append(ans, float64(f[n][j])/m)}return
}
JavaScript
/*** @param {number} n* @return {number[]}*/
var dicesProbability = function (n) {const f = Array.from({ length: n + 1 }, () => Array(6 * n + 1).fill(0));for (let j = 1; j <= 6; ++j) {f[1][j] = 1;}for (let i = 2; i <= n; ++i) {for (let j = i; j <= 6 * i; ++j) {for (let k = 1; k <= 6; ++k) {if (j >= k) {f[i][j] += f[i - 1][j - k];}}}}const ans = [];const m = Math.pow(6, n);for (let j = n; j <= 6 * n; ++j) {ans.push(f[n][j] / m);}return ans;
};
C#
public class Solution {public double[] DicesProbability(int n) {int[,] f = new int[n + 1, 6 * n + 1];for (int j = 1; j <= 6; ++j) {f[1, j] = 1;}for (int i = 2; i <= n; ++i) {for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j >= k) {f[i, j] += f[i - 1, j - k];}}}}double m = Math.Pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[n, j] / m;}return ans;}
}
Swift
class Solution {func dicesProbability(_ n: Int) -> [Double] {var f = Array(repeating: Array(repeating: 0, count: 6 * n + 1), count: n + 1)for j in 1...6 {f[1][j] = 1}if n > 1 {for i in 2...n {for j in i...(6 * i) {for k in 1...6 {if j >= k {f[i][j] += f[i - 1][j - k]}}}}}var m = 1.0for _ in 0..<n {m *= 6.0}var ans = Array(repeating: 0.0, count: 5 * n + 1)for j in n...(6 * n) {ans[j - n] = Double(f[n][j]) / m}return ans}
}

方法二:动态规划(空间优化)

我们可以发现,上述方法中的 f [ i ] [ j ] f[i][j] f[i][j] 的值仅与 f [ i − 1 ] [ j − k ] f[i-1][j-k] f[i1][jk] 有关,因此我们可以使用滚动数组的方式,将空间复杂度优化至 O ( 6 n ) O(6n) O(6n)

Python3
class Solution:def dicesProbability(self, n: int) -> List[float]:f = [0] + [1] * 6for i in range(2, n + 1):g = [0] * (6 * i + 1)for j in range(i, 6 * i + 1):for k in range(1, 7):if 0 <= j - k < len(f):g[j] += f[j - k]  #仅仅与投掷n-1个骰子的方案数 数组有关f = gm = pow(6, n)return [f[j] / m for j in range(n, 6 * n + 1)]
Java
class Solution {public double[] dicesProbability(int n) {int[] f = new int[7];Arrays.fill(f, 1);f[0] = 0;for (int i = 2; i <= n; ++i) {int[] g = new int[6 * i + 1];for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j - k >= 0 && j - k < f.length) {g[j] += f[j - k];}}}f = g;}double m = Math.pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[j] / m;}return ans;}
}
Go
func dicesProbability(n int) (ans []float64) {f := make([]int, 7)for i := 1; i <= 6; i++ {f[i] = 1}for i := 2; i <= n; i++ {g := make([]int, 6*i+1)for j := i; j <= 6*i; j++ {for k := 1; k <= 6; k++ {if j-k >= 0 && j-k < len(f) {g[j] += f[j-k]}}}f = g}m := math.Pow(6, float64(n))for j := n; j <= 6*n; j++ {ans = append(ans, float64(f[j])/m)}return
}
JavaScript
/*** @param {number} num* @return {number[]}*/
var dicesProbability = function (n) {let f = Array(7).fill(1);f[0] = 0;for (let i = 2; i <= n; ++i) {let g = Array(6 * i + 1).fill(0);for (let j = i; j <= 6 * i; ++j) {for (let k = 1; k <= 6; ++k) {if (j - k >= 0 && j - k < f.length) {g[j] += f[j - k];}}}f = g;}const ans = [];const m = Math.pow(6, n);for (let j = n; j <= 6 * n; ++j) {ans.push(f[j] / m);}return ans;
};
C#
public class Solution {public double[] DicesProbability(int n) {int[] f = new int[7];for (int i = 1; i <= 6; ++i) {f[i] = 1;}f[0] = 0;for (int i = 2; i <= n; ++i) {int[] g = new int[6 * i + 1];for (int j = i; j <= 6 * i; ++j) {for (int k = 1; k <= 6; ++k) {if (j - k >= 0 && j - k < f.Length) {g[j] += f[j - k];}}}f = g;}double m = Math.Pow(6, n);double[] ans = new double[5 * n + 1];for (int j = n; j <= 6 * n; ++j) {ans[j - n] = f[j] / m;}return ans;}
}

相关文章:

60. n 个骰子的点数【难】

comments: true difficulty: 简单 edit_url: https://github.com/doocs/leetcode/edit/main/lcof/%E9%9D%A2%E8%AF%95%E9%A2%9860.%20n%E4%B8%AA%E9%AA%B0%E5%AD%90%E7%9A%84%E7%82%B9%E6%95%B0/README.md 面试题 60. n 个骰子的点数 题目描述 把n个骰子扔在地上&#xff0c;所…...

高性能编程:无锁队列

目录 1. 无锁队列 1.1 无锁 1.1.1 阻塞&#xff08;Blocking&#xff09; 1.1.2 无锁&#xff08;Lock-Free&#xff09; 1.1.3 无等待&#xff08;Wait-Free&#xff09; 1.2 队列 1.2.1 链表实现的队列 1.2.2 数组实现的队列 1.2.3 混合实现的队列 1.3 多线程中的先…...

word标题排序编号错误

1.问题&#xff1a;word中有时会出现当前编号是2.1、3.1、4.1&#xff0c;下级编号却从1.1.1开始的情况&#xff0c;类似情况如下&#xff1a; 2.原因&#xff1a;此问题多为编号4.1、4.2和编号4.1.1使用的多级编号模板不一样&#xff0c;可以选中4.2&#xff0c;看下使用的多级…...

力扣---80. 删除有序数组中的重复项 II

给你一个有序数组 nums &#xff0c;请你 原地 删除重复出现的元素&#xff0c;使得出现次数超过两次的元素只出现两次 &#xff0c;返回删除后数组的新长度。 不要使用额外的数组空间&#xff0c;你必须在 原地 修改输入数组 并在使用 O(1) 额外空间的条件下完成。 说明&…...

一篇文章,讲清SQL的 joins 语法

SQL 中的不同 JOIN 类型&#xff1a; 1. &#xff08;INNER&#xff09;JOIN&#xff08;内连接&#xff09;&#xff1a;返回两个表中具有匹配值的记录。 2. LEFT&#xff08;OUTER&#xff09;JOIN&#xff08;左外连接&#xff09;&#xff1a;返回左表中的所有记录&#…...

设计模式之建造者模式(通俗易懂--代码辅助理解【Java版】)

文章目录 设计模式概述1、建造者模式2、建造者模式使用场景3、优点4、缺点5、主要角色6、代码示例&#xff1a;1&#xff09;实现要求2&#xff09;UML图3)实现步骤&#xff1a;1&#xff09;创建一个表示食物条目和食物包装的接口2&#xff09;创建实现Packing接口的实体类3&a…...

文生视频算法

文生视频 Sora解决问题&#xff1a;解决思路&#xff1a; CogVideoX解决问题&#xff1a;解决思路&#xff1a; Stable Video Diffusion&#xff08;SVD&#xff09;解决问题&#xff1a;解决思路&#xff1a; 主流AI视频技术框架&#xff1a; Sora Sora: A Review on Backg…...

LoRA: Low-Rank Adaptation Abstract

LoRA: Low-Rank Adaptation Abstract LoRA 论文的摘要介绍了一种用于减少大规模预训练模型微调过程中可训练参数数量和内存需求的方法&#xff0c;例如拥有1750亿参数的GPT-3。LoRA 通过冻结模型权重并引入可训练的低秩分解矩阵&#xff0c;减少了10,000倍的可训练参数&#xf…...

正点原子阿尔法ARM开发板-IMX6ULL(二)——介绍情况以及汇编

文章目录 一、裸机开发&#xff08;21个&#xff09;二、嵌入式Linux驱动例程三、汇编3.1 处理器内部数据传输指令3.2 存储器访问指令3.3 压栈和出栈指令3.4 跳转指令3.5 算术运算指令3.6 逻辑运算指令 一、裸机开发&#xff08;21个&#xff09; 二、嵌入式Linux驱动例程 三、…...

Unreal Engine——AI生成高精度的虚拟人物和环境(虚拟世界构建、电影场景生成)(一)

一、Unreal Engine 介绍 Unreal Engine&#xff08;虚幻引擎&#xff09;是由Epic Games开发的强大3D游戏开发引擎&#xff0c;自1998年首次发布以来&#xff0c;已经历了多个版本的迭代。虚幻引擎主要用于制作高品质的3D游戏&#xff0c;但也广泛用于电影、建筑、仿真等其他领…...

Emlog程序屏蔽用户IP拉黑名单插件

插件介绍 在很多时候我们需要得到用户的真实IP地址&#xff0c;例如&#xff0c;日志记录&#xff0c;地理定位&#xff0c;将用户信息&#xff0c;网站数据分析等,其实获取IP地址很简单&#xff0c;感兴趣的可以参考一下。 今天给大家带来舍力写的emlog插件&#xff1a;屏蔽…...

发送成绩的app或小程序推荐

老师们&#xff0c;新学期的第一次月考马上开始&#xff0c;是不是还在为如何高效、便捷地发布成绩而头疼呢&#xff1f;别担心&#xff0c;都2024年了&#xff0c;我们有更智能的方式来解决这个问题&#xff01; 给大家安利一个超级实用的工具——易查分小程序。这个小程序简…...

51单片机-AT24C02(IIC总线介绍及其时序编写步骤)-第一节(下一节实战)

IIC开始通信&#xff08;6大步&#xff09; 我以前的文章也有对基本常用的通信协议讲解&#xff0c;如SPI UART IIC RS232 RS485 CAN的讲解&#xff0c;可前往主页查询&#xff0c;&#xff08;2024.9.12,晚上20&#xff1a;53&#xff0c;将AT24C02存储芯片&#xff0c;掉电不…...

<<编码>> 第 11 章 逻辑门电路--或非门, 与非门, 缓冲器 示例电路

继电器或非门 info::操作说明 鼠标单击开关切换开合状态 闭合任意一个开关可使电路断开 primary::在线交互操作链接 https://cc.xiaogd.net/?startCircuitLinkhttps://book.xiaogd.net/code-hlchs-examples/assets/circuit/code-hlchs-ch11-19-nor-gate-by-relay.txt 或非门 i…...

股票api接口程序化报备,程序化交易监管对个人量化交易者有何影响

炒股自动化&#xff1a;申请官方API接口&#xff0c;散户也可以 python炒股自动化&#xff08;0&#xff09;&#xff0c;申请券商API接口 python炒股自动化&#xff08;1&#xff09;&#xff0c;量化交易接口区别 Python炒股自动化&#xff08;2&#xff09;&#xff1a;获取…...

如何自己搭建一个网站?

今天的文章总结适合0基础&#xff0c;网站搭建的技巧和流程&#xff0c;哪怕你是小白&#xff0c;不会编程&#xff0c;也可以制作非常漂亮且实用的企业网站&#xff0c;如果想做个人博客更是不在话下。希望我的经验能帮助更多没有过多的经费、没有建站基础的朋友。用户跟着我的…...

虚拟化数据恢复—断电导致虚拟机目录项被破坏的数据恢复案例

虚拟化数据恢复环境&#xff1a; 某品牌服务器&#xff08;部署VMware EXSI虚拟机&#xff09;同品牌存储&#xff08;存放虚拟机文件&#xff09;。 虚拟化故障&#xff1a; 意外断电导致服务器上某台虚拟机无法正常启动。查看虚拟机配置文件发现这台故障虚拟机除了磁盘文件以…...

[机器学习]聚类算法

1 聚类算法简介 # 导包 from sklearn.datasets import make_blobs import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import calinski_harabasz_score # 构建数据 x,ymake_blobs(n_samples1000,n_features2,centers[[-1,-1],[0,0],[1…...

JVM面试真题总结(七)

文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 文章收录在网站&#xff1a;http://hardyfish.top/ 解释GC的引用计数算法及其局限性 引用计数算法是一种非常直观、简…...

深入理解CASAtomic原子操作类详解

1.CAS介绍 什么是 CAS CAS&#xff08;Compare And Swap&#xff0c;比较与交换&#xff09;&#xff0c;是非阻塞同步的实现原理&#xff0c;它是CPU硬件层面的一种指令&#xff0c;从CPU层面能保证"比较与交换"两个操作的原子性。CAS指令操作包括三个参数&#x…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

蓝桥杯 2024 15届国赛 A组 儿童节快乐

P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡&#xff0c;轻快的音乐在耳边持续回荡&#xff0c;小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下&#xff0c;六一来了。 今天是六一儿童节&#xff0c;小蓝老师为了让大家在节…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

OkHttp 中实现断点续传 demo

在 OkHttp 中实现断点续传主要通过以下步骤完成&#xff0c;核心是利用 HTTP 协议的 Range 请求头指定下载范围&#xff1a; 实现原理 Range 请求头&#xff1a;向服务器请求文件的特定字节范围&#xff08;如 Range: bytes1024-&#xff09; 本地文件记录&#xff1a;保存已…...

【配置 YOLOX 用于按目录分类的图片数据集】

现在的图标点选越来越多&#xff0c;如何一步解决&#xff0c;采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集&#xff08;每个目录代表一个类别&#xff0c;目录下是该类别的所有图片&#xff09;&#xff0c;你需要进行以下配置步骤&#x…...

ElasticSearch搜索引擎之倒排索引及其底层算法

文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...