数学基础 -- 线性代数之奇异值
奇异值与其应用
1. 奇异值定义
对于任意的矩阵 A A A(可以是方阵或非方阵),存在三个矩阵 U U U、 Σ \Sigma Σ 和 V V V,使得:
A = U Σ V T A = U \Sigma V^T A=UΣVT
其中:
- U U U 是一个 m × m m \times m m×m 的正交矩阵,表示左奇异向量;
- V V V 是一个 n × n n \times n n×n 的正交矩阵,表示右奇异向量;
- Σ \Sigma Σ 是一个 m × n m \times n m×n 的对角矩阵,其中对角线上的元素为奇异值。
2. 奇异值的性质
- 非负性:奇异值始终为非负数,即对角矩阵 Σ \Sigma Σ 的对角元素均为非负。
- 奇异值的数量:对于一个 m × n m \times n m×n 的矩阵 A A A,最多有 min ( m , n ) \min(m, n) min(m,n) 个奇异值。
- 矩阵的秩:矩阵 A A A 的秩等于其非零奇异值的数量。
- 特征值与奇异值的关系:方阵 A A A 的奇异值是矩阵 A T A A^T A ATA 的特征值的平方根。
- 不变性:奇异值是矩阵的固有属性,与矩阵的旋转或变换无关。
2.1 奇异值分解的示例
为了更好地理解奇异值分解的具体过程和应用,我们通过一个简单的例子展示如何进行奇异值分解。
示例矩阵
考虑一个 3 × 2 3 \times 2 3×2 的矩阵 A A A:
A = ( 1 0 0 1 1 1 ) A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} A= 101011
我们将对这个矩阵进行奇异值分解。
1. 计算 A T A A^T A ATA
首先,我们计算矩阵 A T A A^T A ATA:
A T A = ( 1 0 1 0 1 1 ) ( 1 0 0 1 1 1 ) = ( 2 1 1 2 ) A^T A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} ATA=(100111) 101011 =(2112)
2. 求 A T A A^T A ATA 的特征值和特征向量
接下来,我们求矩阵 A T A A^T A ATA 的特征值和特征向量。先写出特征方程:
det ( A T A − λ I ) = det ( 2 − λ 1 1 2 − λ ) = ( 2 − λ ) 2 − 1 = λ 2 − 4 λ + 3 = 0 \det(A^T A - \lambda I) = \det\begin{pmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{pmatrix} = (2 - \lambda)^2 - 1 = \lambda^2 - 4\lambda + 3 = 0 det(ATA−λI)=det(2−λ112−λ)=(2−λ)2−1=λ2−4λ+3=0
解得特征值为:
λ 1 = 3 , λ 2 = 1 \lambda_1 = 3, \quad \lambda_2 = 1 λ1=3,λ2=1
对于 λ 1 = 3 \lambda_1 = 3 λ1=3,解特征方程 ( A T A − 3 I ) v = 0 (A^T A - 3I)v = 0 (ATA−3I)v=0 得到特征向量:
v 1 = 1 2 ( 1 1 ) v_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} v1=21(11)
对于 λ 2 = 1 \lambda_2 = 1 λ2=1,解 ( A T A − I ) v = 0 (A^T A - I)v = 0 (ATA−I)v=0 得到特征向量:
v 2 = 1 2 ( 1 − 1 ) v_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} v2=21(1−1)
因此,矩阵 V V V 的列向量是特征向量:
V = ( 1 2 1 2 1 2 − 1 2 ) V = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} V=(212121−21)
3. 计算奇异值
奇异值是 A T A A^T A ATA 的特征值的平方根,因此:
σ 1 = 3 , σ 2 = 1 = 1 \sigma_1 = \sqrt{3}, \quad \sigma_2 = \sqrt{1} = 1 σ1=3,σ2=1=1
因此,矩阵 Σ \Sigma Σ 为:
Σ = ( 3 0 0 1 0 0 ) \Sigma = \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} Σ= 300010
4. 计算 U U U
矩阵 U U U 的列向量是矩阵 A A A 的左奇异向量,左奇异向量通过公式 A v i = σ i u i A v_i = \sigma_i u_i Avi=σiui 计算。
对于 σ 1 = 3 \sigma_1 = \sqrt{3} σ1=3,我们有:
A ( 1 2 1 2 ) = ( 1 1 2 ) , u 1 = 1 6 ( 1 1 2 ) A \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, \quad u_1 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} A(2121)= 112 ,u1=61 112
对于 σ 2 = 1 \sigma_2 = 1 σ2=1,我们有:
A ( 1 2 − 1 2 ) = ( 1 − 1 0 ) , u 2 = 1 2 ( 1 − 1 0 ) A \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad u_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} A(21−21)= 1−10 ,u2=21 1−10
因此,矩阵 U U U 为:
U = ( 1 6 1 2 1 6 − 1 2 2 6 0 ) U = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{pmatrix} U= 61616221−210
5. 奇异值分解结果
最终,矩阵 A A A 的奇异值分解为:
A = U Σ V T A = U \Sigma V^T A=UΣVT
其中:
U = ( 1 6 1 2 1 6 − 1 2 2 6 0 ) , Σ = ( 3 0 0 1 0 0 ) , V T = ( 1 2 1 2 1 2 − 1 2 ) U = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & 0 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sqrt{3} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad V^T = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} U= 61616221−210 ,Σ= 300010 ,VT=(212121−21)
3. 奇异值分解的应用
3.1 数据降维与压缩
奇异值分解可用于数据降维,特别是在图像处理或主成分分析(PCA)中,通过保留最大的奇异值,能够有效减少数据量,同时保留数据的主要信息。
3.2 最小二乘问题
在解超定方程或病态方程时,奇异值分解能够提供稳定的最小二乘解。通过分解矩阵 A A A 为奇异值分解形式 A = U Σ V T A = U \Sigma V^T A=UΣVT,我们可以稳定地求解方程组。
例子:奇异值分解在数据压缩中的应用
1. 问题描述
假设我们有一张大小为 100 × 100 100 \times 100 100×100 的灰度图像,用一个矩阵 A A A 表示,每个元素表示像素的亮度值。我们希望通过奇异值分解对这张图像进行压缩。
2. 奇异值分解
对矩阵 A A A 进行奇异值分解,得到:
A = U Σ V T A = U \Sigma V^T A=UΣVT
其中:
- U U U 是 100 × 100 100 \times 100 100×100 的矩阵;
- Σ \Sigma Σ 是 100 × 100 100 \times 100 100×100 的对角矩阵,包含奇异值;
- V T V^T VT 是 100 × 100 100 \times 100 100×100 的矩阵。
3. 压缩过程
我们只保留最大的 k = 20 k = 20 k=20 个奇异值,构造近似矩阵 A k A_k Ak:
A k = U k Σ k V k T A_k = U_k \Sigma_k V_k^T Ak=UkΣkVkT
其中:
- U k U_k Uk 是 100 × 20 100 \times 20 100×20 的矩阵;
- Σ k \Sigma_k Σk 是 20 × 20 20 \times 20 20×20 的对角矩阵;
- V k T V_k^T VkT 是 20 × 100 20 \times 100 20×100 的矩阵。
经过压缩后,总数据量从原来的 10,000 个数据点减少到 6400 个数据点。
例子:奇异值分解在最小二乘问题中的应用
1. 问题描述
我们要解一个线性方程组:
A x = b A x = b Ax=b
其中 A A A 是一个 3 × 2 3 \times 2 3×2 的矩阵, b b b 是一个 3 × 1 3 \times 1 3×1 的已知向量。
矩阵 A A A 和向量 b b b 如下:
A = ( 1 0 0 1 1 1 ) , b = ( 2 2 4 ) A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} A= 101011 ,b= 224
2. 奇异值分解求解最小二乘问题
我们首先对 A A A 进行奇异值分解:
A = U Σ V T A = U \Sigma V^T A=UΣVT
通过计算得到:
U = ( − 0.577 0.707 − 0.577 − 0.707 − 0.577 0.000 ) , Σ = ( 1.732 0 0 1 ) , V T = ( − 0.707 − 0.707 0.707 − 0.707 ) U = \begin{pmatrix} -0.577 & 0.707 \\ -0.577 & -0.707 \\ -0.577 & 0.000 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 1.732 & 0 \\ 0 & 1 \end{pmatrix}, \quad V^T = \begin{pmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{pmatrix} U= −0.577−0.577−0.5770.707−0.7070.000 ,Σ=(1.732001),VT=(−0.7070.707−0.707−0.707)
2.1 计算 U T b U^T b UTb
U T b = ( − 0.577 − 0.577 − 0.577 0.707 − 0.707 0 ) ( 2 2 4 ) = ( − 4.618 1.414 ) U^T b = \begin{pmatrix} -0.577 & -0.577 & -0.577 \\ 0.707 & -0.707 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} -4.618 \\ 1.414 \end{pmatrix} UTb=(−0.5770.707−0.577−0.707−0.5770) 224 =(−4.6181.414)
2.2 解 Σ y = U T b \Sigma y = U^T b Σy=UTb
Σ y = ( 1.732 0 0 1 ) ( y 1 y 2 ) = ( − 4.618 1.414 ) \Sigma y = \begin{pmatrix} 1.732 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -4.618 \\ 1.414 \end{pmatrix} Σy=(1.732001)(y1y2)=(−4.6181.414)
解得:
y 1 = − 2.666 , y 2 = 1.414 y_1 = -2.666, \quad y_2 = 1.414 y1=−2.666,y2=1.414
2.3 计算 x = V y x = V y x=Vy
x = V y = ( − 0.707 − 0.707 0.707 − 0.707 ) ( − 2.666 1.414 ) = ( 2 1 ) x = V y = \begin{pmatrix} -0.707 & -0.707 \\ 0.707 & -0.707 \end{pmatrix} \begin{pmatrix} -2.666 \\ 1.414 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} x=Vy=(−0.7070.707−0.707−0.707)(−2.6661.414)=(21)
因此,最小二乘解为 x = ( 2 1 ) x = \begin{pmatrix} 2 \\ 1 \end{pmatrix} x=(21)。
总结
奇异值分解在数据压缩和最小二乘问题中有广泛的应用。在数据压缩中,通过保留最大的奇异值,我们可以有效减少数据量,压缩图片或信号;在最小二乘问题中,SVD 提供了数值稳定的解法,特别适用于病态或超定方程组。
相关文章:

数学基础 -- 线性代数之奇异值
奇异值与其应用 1. 奇异值定义 对于任意的矩阵 A A A(可以是方阵或非方阵),存在三个矩阵 U U U、 Σ \Sigma Σ 和 V V V,使得: A U Σ V T A U \Sigma V^T AUΣVT 其中: U U U 是一个 m m m \ti…...

Python爬虫使用实例-wallpaper
1/ 排雷避坑 🥝 中文乱码问题 print(requests.get(urlurl,headersheaders).text)出现中文乱码 原因分析: <meta charset"gbk" />解决方法: 法一: response requests.get(urlurl,headersheaders) response.en…...

探索Go语言中的随机数生成、矩阵运算与数独验证
1. Go中的随机数生成 在许多编程任务中,随机数的生成是不可或缺的。Go语言通过 math/rand 包提供了伪随机数生成方式。伪随机数由种子(seed)决定,如果种子相同,生成的数列也会相同。为了确保每次程序运行时产生不同的随机数,我们…...

无线安全(WiFi)
免责声明:本文仅做分享!!! 目录 WEP简介 WPA简介 安全类型 密钥交换 PMK PTK 4次握手 WPA攻击原理 网卡选购 攻击姿态 1-暴力破解 脚本工具 字典 2-Airgeddon 破解 3-KRACK漏洞 4-Rough AP 攻击 5-wifi钓鱼 6-wifite 其他 WEP简介 WEP是WiredEquivalentPri…...

牛客练习赛128:Cidoai的平均数对(背包dp)
题目描述 给定 nnn 对数 (ai,bi)(a_i,b_i)(ai,bi) 和参数 kkk,你需要选出一些对使得在满足 bib_ibi 的平均值不超过 kkk 的同时,aia_iai 的和最大,求出这个最大值。 输入描述: 第一行两个整数分别表示 n,kn,kn,k。 接下来 nnn 行&…...

Python世界:简易地址簿增删查改算法实践
Python世界:简易地址簿增删查改算法实践 任务背景编码思路代码实现本文小结 任务背景 该任务来自简明Python教程中迈出下一步一章的问题: 编写一款你自己的命令行地址簿程序, 你可以用它浏览、 添加、 编辑、 删除或搜索你的联系人ÿ…...

网络安全-intigriti-0422-XSS-Challenge Write-up
目录 一、环境 二、解题 2.1看源码 一、环境 Intigriti April Challenge 二、解题 要求:弹出域名就算成功 2.1看源码 我们看到marge方法,肯定是原型链污染题目 接的是传参,我们可控的点在于qs.config和qs.settings,这两个可…...

Debian Linux 11 使用crash
文章目录 前言一、环境安装1.1 安装debug package1.2 安装crash 二、使用crash 前言 # cat /etc/os-release PRETTY_NAME"Debian GNU/Linux 11 (bullseye)" NAME"Debian GNU/Linux" VERSION_ID"11" VERSION"11 (bullseye)" VERSION_C…...

python列表 — 按顺序找出b表中比a表多出的元素
目录 一、功能描述 二、适用场景 三、代码实现 一、功能描述 有a、b两个列表,a列表有3个元素;b列表有7个元素。b列表多出的一个元素可能在随机的位置,在不影响其他元素的情况下,找到b列表多出的那四个元素,并按照在…...

如何使用Python创建目录或文件路径列表
在 Python 中,创建目录或生成文件路径列表通常涉及使用 os、os.path 或 pathlib 模块。下面是一些常见的任务和方法,用于在 Python 中创建目录或获取文件路径列表。 问题背景 在初始阶段的 Python 学习过程中,可能遇到这样的问题:…...

领夹麦克风哪个品牌好,哪种领夹麦性价比高,无线麦克风推荐
在音频录制需求日益多样化的今天,无线领夹麦克风作为提升音质的关键设备,其重要性不言而喻。市场上鱼龙混杂,假冒伪劣、以次充好的现象屡见不鲜。这些产品往往以低价吸引消费者,却在音质、稳定性、耐用性等方面大打折扣࿰…...

苍穹外卖学习笔记(五)
文章目录 二.新增菜品1.图片上传2.具体新增菜品 二.新增菜品 1.图片上传 这里采用了阿里云oss对象存储服务 application.yml alioss:endpoint: ${sky.alioss.endpoint}access-key-id: ${sky.alioss.access-key-id}access-key-secret: ${sky.alioss.access-key-secret}bucket…...

什么是卷积层、池化层、BN层,有什么作用?
什么是卷积层、池化层、BN层,有什么作用? 卷积层池化层BN层 卷积层 定义: 卷积层是CNN中的核心组件,它通过卷积运算对输入数据进行特征提取。卷积层由多个卷积单元组成,每个卷积单元的参数通过反向传播算法优化得到。…...

[学习笔记]《CSAPP》深入理解计算机系统 - Chapter 4 处理器体系结构Chapter 5 优化程序性能
总结一些第四章和第五章的一些关键信息 Chapter 4 处理器体系结构将处理组织成阶段 Chapter 5 优化程序性能 Chapter 4 处理器体系结构 在硬件中,寄存器直接将它的输入和输出线连接到电路的其他盆。 在机器级变成中,寄存器代表的是 CPU 中为数不多的可寻…...

案例分享|我是这样转型做数据产品经理的?
本文为才聚学员投稿的原创作品,现在才聚正面向专业项目管理者征集“项目管理实战案例”原创文章,被采纳即可获得丰厚稿酬,欢迎大家关注公众号踊跃投稿。 如您有意向投稿,可将稿件投递给我们。 故事介绍 三段故事,讲…...

ffmpeg面向对象-rtsp拉流相关对象
目录 1.AVFormatContext和FFFormatContext类。1.1 概述1.2 构造函数1.3 oopc的继承实现 2. AVInputFormat 类。2.1 多态的实现 3.所用设计模式3.1模板模式3.2 工厂模式? 3.3 rtsp拉流建链 4.this指针5.小结6.rtsp拉流流程 1.AVFormatContext和FFFormatContext类。 …...

feign client发送Post请求,发送对象参数,服务端接收不到正确参数报错排查
记一次feignclient发送请求服务端接收不到正确参数排查 服务端代码: Operation(summary "Create team")PostMapping("post")RequiresPermissions("team:add")public RestResponse addTeam(Valid Team team) {this.teamService.crea…...

Hadoop林子雨安装
文章目录 hadoop安装教程注意事项: hadoop安装教程 链接: 安装教程 注意事项: 可以先安装ububtu增强功能,完成共享粘贴板和共享文件夹 ubuntu增强功能 2.这里就可以使用共享文件夹 或者在虚拟机浏览器,用 微信文件传输助手 传文…...

Springboot项目总结
1.为了调用写在其他包里面的类的方法 但是不使用new来实现调用这个类里面的方法,这个时候我们就需要将这个类注入到ioc容器里面,通过ioc容器来实现自动生成一个对象。 对ioc容器的理解:自动将一个对象实现new. 考察了and 和 or组合使用&…...

目标检测从入门到精通——数据增强方法总结
以下是YOLO系列算法(从YOLOv1到YOLOv7)中使用的数据增强方法的总结,包括每种方法的数学原理、相关论文以及对应的YOLO版本。 YOLO系列数据增强方法总结 数据增强方法数学原理相关论文图像缩放将输入图像缩放到固定大小(如448x44…...

SQL server 的异常处理 一个SQL异常 如何不影响其他SQL执行
在 SQL Server 中,存储过程中的 SQL 语句是顺序执行的。如果其中任何一个 SQL 语句遇到了错误或异常,那么默认情况下,这个错误会导致整个事务(如果有的话)回滚,并且存储过程会立即停止执行,不会…...

STM32——看门狗通俗解析
笔者在学习看门狗的视频后,对看门狗仍然是一知半解,后面在实际应用中发现它是一个很好用的检测或者调试工具。所以总结一下笔者作为初学小白对看门狗的理解。 主函数初始化阶段、循环阶段和复位 众所周知,程序的运行一般是这样的࿱…...

点亮第一盏LED灯 5): stm32CubeMX生成Keil代码
嵌入式入门,继续点亮第一盏LED灯,前面文章已经配置了GPIO引脚和时钟,那么基本上stm32CubeMX的配置就完成了,还有一点就是可以对PC13这个引脚起个别名, 这里起的别名是 LED_PC13,还有注意地方就是GPIO mode…...

ollama语言大模型部署使用
ollama语言大模型部署使用 前言一、下载安装maxkb1、下载解压赋权2、安装 二、安装ollamadocker运行 三、无需获取api_keymaxkb安装ollama模型对,就是这,你选好基础模型后,只需要给他地址,添加完成后自行调用ollama安装你选择好的…...

redis 基本数据类型—string类型
一、介绍 Redis 中的字符串,直接就是按照二进制数据的方式存储的,不会做任何的编码转换。 Redis对于 string 类型,限制了大小最大是512M 二、命令 SET 将 string 类型的 value 设置到 key 中。如果 key 之前存在,则覆盖&#…...

Git 使用教程:从入门到精通
Git 是一个开源的分布式版本控制系统,由 Linus Torvalds 创建,用于有效、高速地处理从小到大的项目版本管理。本教程将带你从 Git 的安装开始,逐步学习到如何使用 Git 进行日常的版本控制操作。 安装 Git Windows 访问 Git 官方网站 下载 …...

ES查询的一些优化方式
ES查询的一些优化方式 filter和query Query会计算得分,filte不是, 整体上query会更耗时 字段方式: KEYWORD 和 text, Text检索的方式往往会占用更多性能,它往往需要伴随着模糊匹配和分词 分页的大小 From 和size的大小合理设置…...

计算左边(比自己小的元素)的最长距离
前言:一般做的题目都是使用单调栈来求出距离这个点最近的那个比这个数大或小的元素,但是如果是需要找到最远的那个元素呢?我们可以用到类似逆序对的思路,我们先进行排序从小到大,接着我们先处理左边,每次维…...

【C++算法】二分查找
二分查找 题目链接 二分查找https://leetcode.cn/problems/binary-search/ 算法原理 代码步骤 代码展示 class Solution { public:int search(vector<int>& nums, int target) {int left 0, right nums.size() - 1;while(left < right){// 防止溢出int mid …...

红日靶场通关
初始准备 首先是网络配置,看教程来的,我配置完的效果如下 windows7:(内:192.168.52.143 / 外:192.168.154.136) windows2003:(内:192.168.52.141)windows2008:(内:192.…...