当前位置: 首页 > news >正文

深度学习和计算机视觉:实现图像分类

深度学习在计算机视觉领域的应用已经取得了革命性的进展。从图像分类到对象检测,再到图像分割和生成,深度学习模型在这些任务中都展现出了卓越的性能。本篇文章将介绍如何使用深度学习进行图像分类,这是计算机视觉中的一个基础任务。

计算机视觉与深度学习

计算机视觉是人工智能的一个分支,它使计算机能够理解和解释视觉信息。深度学习,特别是卷积神经网络(CNN),已经成为计算机视觉任务的强大工具。CNN能够自动从图像中学习特征,这在传统的计算机视觉方法中是一项复杂且耗时的工作。

图像分类简介

图像分类是将图像分配到预定义类别的任务。例如,一个图像分类模型可能会识别图像中的物体是猫、狗还是汽车。这是许多高级计算机视觉任务的基础,如对象检测和图像分割。

数据集介绍

在图像分类任务中,常用的数据集是CIFAR-10,它包含了10个类别的60,000张32x32彩色图像。每个类别有6,000张图像。

环境准备

确保你已经安装了PyTorch和torchvision。如果没有安装,可以通过以下命令安装:

pip install torch torchvision

构建模型

我们将构建一个简单的CNN模型来进行图像分类。

导入必要的库

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader

定义数据预处理

transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

加载数据集

trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)

定义CNN模型

class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.conv1 = nn.Conv2d(3, 6, 5)self.pool = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(6, 16, 5)self.fc1 = nn.Linear(16 * 5 * 5, 120)self.fc2 = nn.Linear(120, 84)self.fc3 = nn.Linear(84, 10)def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 16 * 5 * 5)x = F.relu(self.fc1(x))x = F.relu(self.fc2(x))x = self.fc3(x)return xnet = Net()

定义损失函数和优化器

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

训练模型

训练过程

for epoch in range(2):  # loop over the dataset multiple timesrunning_loss = 0.0for i, data in enumerate(trainloader, 0):inputs, labels = dataoptimizer.zero_grad()outputs = net(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()if i % 2000 == 1999:    # print every 2000 mini-batchesprint(f'[{epoch + 1}, {i + 1:5d}] loss: {running_loss / 2000:.3f}')running_loss = 0.0print('Finished Training')

测试模型

correct = 0
total = 0
with torch.no_grad():for data in testloader:images, labels = dataoutputs = net(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print(f'Accuracy of the network on the 10000 test images: {100 * correct / total}%')

结语

通过上述步骤,我们使用PyTorch构建并训练了一个简单的CNN模型来对CIFAR-10数据集中的图像进行分类。这个模型虽然简单,但它涵盖了深度学习在计算机视觉任务中的关键概念。随着你对深度学习的进一步学习,你可以尝试优化这个模型,或者尝试解决更复杂的计算机视觉问题。

✅作者简介:热爱科研的人工智能开发者,修心和技术同步精进

❤欢迎关注我的知乎:对error视而不见

代码获取、问题探讨及文章转载可私信。

☁ 愿你的生命中有够多的云翳,来造就一个美丽的黄昏。

🍎获取更多人工智能资料可点击链接进群领取,谢谢支持!👇

点击领取更多详细资料

相关文章:

深度学习和计算机视觉:实现图像分类

深度学习在计算机视觉领域的应用已经取得了革命性的进展。从图像分类到对象检测,再到图像分割和生成,深度学习模型在这些任务中都展现出了卓越的性能。本篇文章将介绍如何使用深度学习进行图像分类,这是计算机视觉中的一个基础任务。 计算机…...

代码随想录算法训练营第五十八天 | 拓扑排序精讲-软件构建

目录 软件构建 思路 拓扑排序的背景 拓扑排序的思路 模拟过程 判断有环 写代码 方法一: 拓扑排序 软件构建 题目链接:卡码网:117. 软件构建 文章讲解:代码随想录 某个大型软件项目的构建系统拥有 N 个文件,文…...

Spring Cloud常见面试题

1.请说说你用过Spring Cloud哪些组件?这些组件分别有什么作用? 1、注册中心:Eureka、Nacos、Zookeeper、Consul;(服务注册) 2、负载均衡:Ribbon、LoadBalancer;(客户端的…...

老古董Lisp实用主义入门教程(9): 小小先生学习Lisp表达式

小小先生 小小先生个子很小,胃口也很小,每次只能干一件事情,还是一件很小很小的事情。 好奇先生已经把explore-lisp代码库安装好,小小先生就只需要打开VS Code, 新建一个lisp为后缀的文件,就能够开始写Lisp代码。 c…...

基于YOLOV8+Pyqt5光伏太阳能电池板目标检测系统

基于YOLOV8Pyqt5光伏太阳能电池板目标检测系统 高质量太阳能光伏电池板可见光图像数据集,标签包含鸟粪,清洁,脏污,电气损坏,物理损坏,积雪覆盖六类。用于目标检测,缺陷检测,异物检测…...

【C++ 设计模式】单例模式的两种懒汉式和饿汉式

文章目录 1. 单例模式2. 单例模式简单示例3. 懒汉模式4. 饿汉模式5. 懒汉式和饿汉式的区别 1. 单例模式 🐧定义:保证一个类仅有一个实例,并提供一个访问它的全局访问点。 单例模式是一种常用的软件设计模式,在它的核心结构中只包…...

计算机的错误计算(九十三)

摘要 探讨 log(y,x) 即以 x 为底 y 的对数的计算精度问题。 Log(y,x)运算是指 x 为底 y 的对数。 例1. 计算 log(123667.888, 0.999999999999999) . 不妨在Python中计算,则有: 若在 Excel 单元格中计算,则有几乎同样的输出: 然…...

基于SpringBoot+Vue的牙科就诊管理系统(带1w+文档)

基于SpringBootVue的牙科就诊管理系统(带1w文档) 基于SpringBootVue的牙科就诊管理系统(带1w文档) 伴随着互联网发展,现今信息类型愈来愈多,信息量也非常大,那也是信息时代的缩影。近些年,电子元器件信息科学合理发展的趋势变的越…...

微信小程序使用 ==== 粘性布局

目录 Chrome杀了个回马枪 position:sticky简介 你可能不知道的position:sticky 深入理解粘性定位的计算规则 粘性定位其他特征 代码实现 微信小程序在scroll-view中使用sticky Chrome杀了个回马枪 position:sticky早有耳闻也有所了解,后来,Chro…...

LineageOS刷机教程

版权归作者所有,如有转发,请注明文章出处:https://cyrus-studio.github.io/blog/ LineageOS 是一个基于 Android 开源项目(AOSP)的开源操作系统,主要由社区开发者维护。它起源于 CyanogenMod 项目&#xff…...

Unity3D帧同步模式的网络游戏详解

帧同步概述 帧同步(Frame Synchronization)是指在网络游戏中,多个客户端在同一时刻执行相同的游戏逻辑,确保各个客户端的游戏状态保持一致。这种同步方式对于实现公平的多人游戏和减少网络延迟对游戏体验的影响至关重要。Unity3D…...

“树”据结构:并查集从入门到AC

“树”据结构:并查集 前言算法设计代码示例优化相关文章 前言 在一组数据中,数据被分为了不同的集合,那么其中的集合往往可以用树形来表示。而区分集合,与查找集合的元素,就会成为核心的问题。并查集主要就是解决这类…...

高级java每日一道面试题-2024年9月11日-数据库篇-事务回滚的常见原因有哪些?

如果有遗漏,评论区告诉我进行补充 面试官: 事务回滚的常见原因有哪些? 我回答: 在Java高级面试中,讨论事务回滚的常见原因是考察候选人对事务管理的理解深度。事务回滚意味着事务中的所有操作都会被撤销,回到事务开始前的状态。以下是事务…...

目标检测中的解耦和耦合、anchor-free和anchor-base

解耦和耦合 写在前面 在目标检测中,objectness(或 objectness score)指的是一个评分,用来表示某个预测框(bounding box)中是否包含一个目标物体。 具体来说,YOLO等目标检测算法需要在每个候选区…...

git rev-parse

git rev-parse 是 Git 中一个非常有用的命令,用于解析并返回与 Git 对象(如提交、分支、标签等)相关的信息。它可以帮助我们从给定的引用(ref)中解析出 SHA-1 哈希值、路径信息等。这个命令在编写 Git 脚本时尤其有用&…...

【Unity】在Unity 3D中使用Spine开发2D动画

文章目录 内容概括前言下载安装 Spine Pro导入Unity插件Spine动画导入Unity使用展现动画效果展现 内容概括 本文主要讲解 Spine Pro 免(破)费(解)版的安装,以及如何将动画导入到Unity中使用。 前言 通常要用 Spine …...

考试:软件工程(01)

软件开发生命周期 ◆软件定义时期:包括可行性研究和详细需求分析过程,任务是确定软件开发工程必须完成的总目标, 具体可分成问题定义、可行性研究、需求分析等。 ◆软件开发时期:就是软件的设计与实现,可分成概要设计…...

数据结构应用实例(三)——赫夫曼编码

Content: 一、问题描述二、算法思想三、代码实现四、小结 一、问题描述 对一篇英文文章,统计各字符(仅限于26个小写字母)出现的次数,并据此进行 Huffman 编码。 二、算法思想 首先,打开文本文件&#xff0…...

关于Spring Cloud Gateway中 Filters的理解

Spring Cloud Gateway中 Filters的理解 Filters Filters拦截器的作用是,对请求进行处理 可以进行流量染色 ⭐增加请求头 例子 spring:cloud:gateway:routes:- id: add_request_header_routeuri: http://localhost:8123predicates:- Path/api/**filters:- AddR…...

【实践】应用访问Redis突然超时怎么处理?

目录标题 问题描述分析过程查看监控数据系统监控指标JVM监控指标Redis监控指标分析应用异常单机异常规律集群异常规律统计超时的key 初步结论验证结论访问Redis链路slowlogRedis单节点info all定位redis节点定位异常keybigkeystcpdump定位大key影响 经验总结 问题描述 某产品线…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

java_网络服务相关_gateway_nacos_feign区别联系

1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1):从基础到实战的深度解析-CSDN博客,但实际面试中,企业更关注候选人对复杂场景的应对能力(如多设备并发扫描、低功耗与高发现率的平衡)和前沿技术的…...

今日科技热点速览

🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...

ios苹果系统,js 滑动屏幕、锚定无效

现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...

并发编程 - go版

1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...