当前位置: 首页 > news >正文

Anaconda 安装与使用教程

Anaconda 安装与使用教程

介绍

Anaconda 是一个用于科学计算的 Python 和 R 的发行版,它包含了众多流行的科学计算、数据分析、机器学习等领域的库。本教程旨在帮助初学者快速上手 Anaconda,并学会如何使用其管理环境以及安装包。

第一步:安装 Anaconda

1. 访问 [Anaconda 官方网站](https://www.anaconda.com/products/distribution) 下载适合您操作系统的版本。

2. 按照下载页面上的说明进行安装。对于 Windows 用户,请确保勾选 `Add Anaconda to my PATH environment` 选项;对于 MacOS 或 Linux 用户,通常只需要运行下载的脚本即可完成安装。

第二步:启动 Anaconda Prompt(或终端)

- Windows 用户启动 `Anaconda Prompt`。

- MacOS/Linux 用户打开终端。

第三步:创建新的环境

```bash

conda create --name myenv python=3.8

```

第四步:激活环境

在 Windows 上:

```bash

conda activate myenv

```

在 MacOS/Linux 上:

```bash

source activate myenv

```

第五步:安装包

```bash

conda install numpy pandas matplotlib

```

第六步:列出已安装的包

```bash

conda list

```

第七步:更新包

```bash

conda update numpy

```

第八步:删除包

```bash

conda remove numpy

```

第九步:删除环境

```bash

conda env remove --name myenv

```

第十步:使用 Jupyter Notebook

创建环境并安装 Jupyter

```bash

conda create --name jupyter_env jupyter

```

激活环境

```bash

conda activate jupyter_env

```

启动 Jupyter Notebook

```bash

jupyter notebook

```

示例代码

下面是一个简单的 Python 脚本示例,展示如何使用 Pandas 库读取 CSV 文件并绘制图形。

```python

import pandas as pd

import matplotlib.pyplot as plt

加载数据

data = pd.read_csv('example.csv')

查看前几行数据

print(data.head())

绘制图形

plt.figure(figsize=(10,6))

plt.plot(data['x'], data['y'])

plt.title('Example Plot')

plt.xlabel('X Axis Label')

plt.ylabel('Y Axis Label')

plt.show()

```

第十一步:使用 Conda 配置文件

你可以创建一个配置文件来记录环境的设置,这样可以轻松地在其他地方重建相同的环境。

```yaml

environment.yml 文件

name: myenv

dependencies:

- python=3.8

- numpy

- pandas

- matplotlib

```

然后使用以下命令创建环境:

```bash

conda env create -f environment.yml

```

第十二步:导出和导入环境

导出现有环境:

```bash

conda env export > environment.yml

```

导入环境:

```bash

conda env create -f environment.yml

```

相关文章:

Anaconda 安装与使用教程

Anaconda 安装与使用教程 介绍 Anaconda 是一个用于科学计算的 Python 和 R 的发行版,它包含了众多流行的科学计算、数据分析、机器学习等领域的库。本教程旨在帮助初学者快速上手 Anaconda,并学会如何使用其管理环境以及安装包。 第一步:…...

时序预测SARIMAX模型

1. 项目背景 本文基于kaggle平台相关竞赛项目,具体连接如下: Time Series Forecasting With SARIMAX 基本信息如内容说明、数据集、已提交代码、当前得分排名以及比赛规则等,如图【1】所示,可以认真阅读。 图 1 2. 数据读取 …...

gin集成jaeger中间件实现链路追踪

1. 背景 新业务线带来新项目启动,需要改进原有项目的基础框架和组件能力,以提升后续开发和维护效率。项目搭建主要包括技术选型、框架搭建、基础服务搭建等。这其中就涉及到链路追踪的内容,结合其中的踩坑情况,用一篇文章来说明完…...

前端层面----监控与埋点

前言: 站在产品的视角,经常会问如下几个问题: 产品有没有用户使用 用户用得怎么样 系统会不会经常出现异常 如何更好地满足用户需求服务用户 当站在技术视角时,经常会问如下几个问题: 系统出现异常的频率如何 异常…...

linux Command

linux Command 1. 系统监控命令 1.1 top top [param] top -H -p pid,查看进程pid下面的子线程。-b以处理模式操作-c显示完整的命令行而不只是显示命令名。-d 屏幕刷新间隔时间。-l 忽略失效过程。-s 保密模式。-S 累积模式。-u 【用户名】 指定用户名。-p 【进程…...

uniapp登录页面( 适配:pc、小程序、h5)

<!-- 简洁登录页面 --> <template><view class"login-bg"><image class"img-a" src"https://zhoukaiwen.com/img/loginImg/2.png"></image><image class"img-b" src"https://zhoukaiwen.com/im…...

关于OceanBase 多模一体化的浅析

在当今多元化的业务生态中&#xff0c;各行各业对数据库系统的需求各有侧重。举例来说&#xff0c;金融风控领域对数据库的高效事务处理&#xff08;TP&#xff09;和分析处理&#xff08;AP&#xff09;能力有着严格要求&#xff1b;游戏行业则更加注重文档数据库的灵活性和性…...

快速git

下载 sudo apt install git配置 $ git config --global user.name "John Doe" $ git config --global user.email johndoeexample.com没有空格可以不加双引号如果~/.ssh没有先创建&#xff08;下一步用&#xff09; ssh方式制作密钥 github解释 #以邮箱作为标签…...

欺诈文本分类检测(十四):GPTQ量化模型

1. 引言 量化的本质&#xff1a;通过将模型参数从高精度&#xff08;例如32位&#xff09;降低到低精度&#xff08;例如8位&#xff09;&#xff0c;来缩小模型体积。 本文将采用一种训练后量化方法GPTQ&#xff0c;对前文已经训练并合并过的模型文件进行量化&#xff0c;通…...

2024.9.14(RC和RS)

一、replicationcontroller &#xff08;RC&#xff09; 1、更改镜像站 [rootk8s-master ~]# vim /etc/docker/daemon.json {"registry-mirrors": ["https://do.nark.eu.org","https://dc.j8.work","https://docker.m.daocloud.io",&…...

【算法随想录04】KMP 字符串匹配算法

这是字符串模式匹配经典算法。 给定一个文本 t 和一个字符串 s&#xff0c;我们尝试找到并展示 s 在 t 中的所有出现&#xff08;occurrence&#xff09;。 #include<bits/stdc.h>using namespace std;vector<int> KMP(string s) {int n s.size();vector<int&g…...

TCP和MQTT通信协议

协议分层 网络分层 协议应用层 Co AP MQTT HTTP传输层 UDP TCP网络层 IP链路层 Enternet 网络分层中最…...

Python Pickle 与 JSON 序列化详解:存储、反序列化与对比

Python Pickle 与 JSON 序列化详解&#xff1a;存储、反序列化与对比 文章目录 Python Pickle 与 JSON 序列化详解&#xff1a;存储、反序列化与对比一 功能总览二 Pickle1 应用2 序列化3 反序列化4 系统资源对象1&#xff09;不能被序列化的系统资源对象2&#xff09;强行序列…...

第二百三十二节 JPA教程 - JPA教程 - JPA ID自动生成器示例、JPA ID生成策略示例

JPA教程 - JPA ID自动生成器示例 我们可以将id字段标记为自动生成的主键列。 数据库将在插入时自动为id字段生成一个值数据到表。 例子 下面的代码来自Person.java。 package cn.w3cschool.common;import javax.persistence.Entity; import javax.persistence.GeneratedValu…...

计算机网络 ---- 计算机网络的体系结构【计算机网络的分层结构】

一、以快递网络来引入分层思想 1.1 “分层” 的设计思想【将庞大而复杂的问题&#xff0c;转化为若干较小的局部问题】 从我们最熟悉的快递网络出发&#xff0c;在你家附近会有一个快递终点站A&#xff0c;在其他的城市&#xff0c;也会有这种快递终点站&#xff0c;比如说快递…...

Vite + Electron 时,Electron 渲染空白,静态资源加载错误等问题解决

问题 如果在 electron 里直接引入 vite 打包后的东西&#xff0c;那么有些资源是请求不到的 这是我的引入方式 根据报错&#xff0c;我们来到 vite 打包后的路径看一看 &#xff0c;修改一下 dist 里的文件路径试了一试 修改后的样子&#xff0c;发现是可以的了 原因分析 …...

ZAB协议(算法)

一、ZAB&#xff08;ZooKeeper Atomic Broadcast&#xff09;介绍 ZAB 即 ZooKeeper Atomic Broadcast&#xff0c;是 ZooKeeper 实现分布式数据一致性的核心算法。它是一种原子广播协议&#xff0c;用于确保在分布式环境中&#xff0c;多个 ZooKeeper 服务器之间的数据一致性。…...

多个音频怎么合并?把多个音频合并在一起的方法推荐

多个音频怎么合并&#xff1f;无论是制作连贯的播客节目还是将音乐片段整合成专辑&#xff0c;音频合并已成为许多创作者的常见需求。通过有效合并音频&#xff0c;可以显著提升项目的整体质量&#xff0c;确保内容的连续性和一致性。然而&#xff0c;合并后的文件通常比原始单…...

【Django】Django Class-Based Views (CBV) 与 DRF APIView 的区别解析

Django Class-Based Views (CBV) 与 DRF APIView 的区别解析 在 Django 开发中&#xff0c;基于类的视图&#xff08;Class-Based Views, CBV&#xff09;是实现可重用性和代码结构化的利器。而 Django REST Framework (DRF) 提供的 APIView 是针对 API 开发的扩展。 一、CBV …...

如何增加Google收录量?

想增加Google收录量&#xff0c;首先自然是你的页面数量就要多&#xff0c;但这些页面的内容也绝对不能敷衍&#xff0c;你的网站都没多少页面&#xff0c;谷歌哪怕想收录都没办法&#xff0c;当然&#xff0c;这是一个过程&#xff0c;持续缓慢的增加页面&#xff0c;增加网站…...

leetcode练习 格雷编码

n 位格雷码序列 是一个由 2n 个整数组成的序列&#xff0c;其中&#xff1a; 每个整数都在范围 [0, 2n - 1] 内&#xff08;含 0 和 2n - 1&#xff09;第一个整数是 0一个整数在序列中出现 不超过一次每对 相邻 整数的二进制表示 恰好一位不同 &#xff0c;且第一个 和 最后一…...

【LLM:Gemini】文本摘要、信息提取、验证和纠错、重新排列图表、视频理解、图像理解、模态组合

开始使用Gemini 目录 开始使用Gemini Gemini简介 Gemini实验结果 Gemini的多模态推理能力 文本摘要 信息提取 验证和纠错 重新排列图表 视频理解 图像理解 模态组合 Gemini多面手编程助理 库的使用 引用 本文概述了Gemini模型和如何有效地提示和使用这些模型。本…...

CMS之Wordpress建设

下载 https://cn.wordpress.org/ 宝塔安装Wordpress 创建网站 上传文件、并解压、剪切文件到项目根目录 安装 -> 数据库信息 -> 标题信息 http://wordpress.xxxxx.com 登录 http://wordpress.xxxxxxxxx.com/wp-admin/ 1. 主题(模板) wordpress-基本使用-02-在主题…...

使用Neo4j存储聊天记录的简单教程

引言 在当今的数据驱动世界中&#xff0c;关系型数据库有时难以处理复杂的、相互关联的数据集。Neo4j作为一款开源图数据库&#xff0c;以其高效管理高连接数据的能力而广受欢迎。本篇文章将详细介绍如何使用Neo4j来存储聊天信息历史&#xff0c;引导您在实际项目中利用其强大…...

前端面试常考算法

快速排序 #include<iostream> #include<cstdio> using namespace std; const int N 100005; int a[N];void quick_sort(int a[], int l, int r) {if (l > r) return;int x a[l r >> 1];int i l - 1, j r 1;while (i < j) {while (a[i] < x);…...

【机试准备】常用容器与函数

Vector详解 原文链接&#xff1a;【超详细】C vector 详解 例题&#xff0c;这一篇就够了-CSDN博客 向量&#xff08;Vector&#xff09;是一个封装了动态大小数组的顺序容器&#xff08;Sequence Container&#xff09;。跟任意其它类型容器一样&#xff0c;它能够存放各种…...

Base 社区见面会 | 新加坡站

活动信息 备受期待的 Base 社区见面会将于 Token2049 期间在新加坡举行&#xff0c;为 Base 爱好者和生态系统建设者提供一个独特的交流机会。本次活动由 DAOBase 组织&#xff0c;Base 和 Coinbase 提供支持&#xff0c;并得到了以下合作伙伴的大力支持&#xff1a; The Sand…...

麒麟操作系统搭建Nacos集群

Nacos 集群搭建 2.4.2 环境介绍 操作系统Kylin Linux Advanced Server V10 (Lance)Kylin Linux Advanced Server V10 (Lance)Kylin Linux Advanced Server V10 (Lance)内核版本Linux 4.19.90-52.22.v2207.ky10.aarch64Linux 4.19.90-52.22.v2207.ky10.aarch64Linux 4.19.90-52…...

Imagination推出性能最高且具有高等级功能安全性的汽车GPU IP

Imagination DXS GPU 进一步扩大其在汽车领域的领先地位 产品亮点 &#xff1a; 峰值性能比 Imagination 上一代汽车 GPU 提高了 50%&#xff0c;可扩展至 192GPixel/s、6 TFLOPS 和 24TOPS计算工作负载的性能提升多达十倍引入创新的分布式功能安全机制&#xff0c;以最小的…...

端口大全说明,HTTP,TCP,UDP常见端口对照表

HTTP,TCP,UDP常见端口对照表,下面罗列了包括在Linux 中的服务、守护进程、和程序所使用的最常见的通信端口小贴士&#xff1a;CtrlF 快速查找 Http端口号&#xff08;点标题可收缩或展开&#xff09; No1.最常用端口 端口号码/层名称注释1tcpmuxTCP端口服务多路复用5rje远程作…...