当前位置: 首页 > news >正文

算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143. 最长公共子序列

300. 最长递增子序列

1.dp定义:dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

2.递推公式:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

 3.初始化:每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674. 最长连续递增序列

1.dp定义:dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

2.递推公式:如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

 3.dp[i]应该初始1;        

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718. 最长重复子数组

1.dp定义:以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。

2.递推公式:当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

3.初始化:根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

注:如果dp数组以i,j为结尾,那么初始化时,应该为dp[i] = dp[j]时初始化为1

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

1143. 最长公共子序列

和上一题的区别是不要求是连续的了,但要有相对顺序

1.dp含义:dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

2.递推公式:如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};

相关文章:

算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143. 最长公共子序列

300. 最长递增子序列 1.dp定义&#xff1a;dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度 2.递推公式&#xff1a;if (nums[i] > nums[j]) dp[i] max(dp[i], dp[j] 1); 注意这里不是要dp[i] 与 dp[j] 1进行比较&#xff0c;而是我们要取dp[j] 1的最大值…...

go 笔记

数据结构与 方法&#xff08;增删改查&#xff09; 安装goland,注意版本是2024.1.1&#xff0c;不是2024.2.1&#xff0c;软件下载地址也在链接中提供了 ‘go’ 不是内部或外部命令&#xff0c;也不是可运行的程序 或批处理文件。 在 Windows 搜索栏中输入“环境变量”&#…...

路由等保测评

1.身份鉴别 应对登录的用户进行身份标识和鉴别&#xff0c; 身份标识具有唯一性&#xff0c;身份鉴别信息具有复杂度要求并定期更换。 可以使用“ service password-encryption"命令对存储在配置文件中的所有口令和类似数据进行加密&#xff0c; 以避免攻击者通过读取配…...

C# 反射之动态生成dll/exe

这个可能应该属于反射的高级使用范围了&#xff0c;平常在项目中使用的人估计也不是很多。由于使用反射的话会降低性能&#xff0c;比如之前用到的GetValue、SetValue等之类&#xff0c;但是使用这种方式会大大提高效率&#xff0c;在这里我只想说&#xff0c;都直接写IL指令了…...

Rust 所有权 Slices

文章目录 发现宝藏1. Slice 的基础知识1.1 什么是 Slice&#xff1f;1.2 如何创建 Slice&#xff1f; 2. 处理字符串 Slice2.1 字符串的 Slice2.2 字符串的 Unicode 和切片 3. 在函数中使用 Slice3.1 传递 Slice 给函数3.2 可变 Slice 的函数 4. 复杂示例4.1 处理多维数组的 Sl…...

windows 安全与网络管理问题

问题&#xff1a;当编写的脚本或程序运行的时候&#xff0c;可能被windows阻止访问网络甚至被删除 避免被删除 wini 进入设置界面 -> 选择更新与安全 -> 选择windwos defender -> 点击添加排除项&#xff0c;将指定的文件或目录排除&#xff0c;避免被软件删除 允许…...

基于Python实现一个庆祝国庆节的小程序

功能&#xff1a; 添加互动功能&#xff1a;允许用户选择不同的祝福语或者查询不同的国庆节信息。动态背景音乐&#xff1a;播放国庆节相关的背景音乐。增加节日小测验&#xff1a;提供一些关于国庆节的趣味小测验&#xff0c;让用户参与。增强图形用户界面 (GUI)&#xff1a;…...

Anaconda 安装与使用教程

Anaconda 安装与使用教程 介绍 Anaconda 是一个用于科学计算的 Python 和 R 的发行版&#xff0c;它包含了众多流行的科学计算、数据分析、机器学习等领域的库。本教程旨在帮助初学者快速上手 Anaconda&#xff0c;并学会如何使用其管理环境以及安装包。 第一步&#xff1a;…...

时序预测SARIMAX模型

1. 项目背景 本文基于kaggle平台相关竞赛项目&#xff0c;具体连接如下&#xff1a; Time Series Forecasting With SARIMAX 基本信息如内容说明、数据集、已提交代码、当前得分排名以及比赛规则等&#xff0c;如图【1】所示&#xff0c;可以认真阅读。 图 1 2. 数据读取 …...

gin集成jaeger中间件实现链路追踪

1. 背景 新业务线带来新项目启动&#xff0c;需要改进原有项目的基础框架和组件能力&#xff0c;以提升后续开发和维护效率。项目搭建主要包括技术选型、框架搭建、基础服务搭建等。这其中就涉及到链路追踪的内容&#xff0c;结合其中的踩坑情况&#xff0c;用一篇文章来说明完…...

前端层面----监控与埋点

前言&#xff1a; 站在产品的视角&#xff0c;经常会问如下几个问题&#xff1a; 产品有没有用户使用 用户用得怎么样 系统会不会经常出现异常 如何更好地满足用户需求服务用户 当站在技术视角时&#xff0c;经常会问如下几个问题&#xff1a; 系统出现异常的频率如何 异常…...

linux Command

linux Command 1. 系统监控命令 1.1 top top [param] top -H -p pid&#xff0c;查看进程pid下面的子线程。-b以处理模式操作-c显示完整的命令行而不只是显示命令名。-d 屏幕刷新间隔时间。-l 忽略失效过程。-s 保密模式。-S 累积模式。-u 【用户名】 指定用户名。-p 【进程…...

uniapp登录页面( 适配:pc、小程序、h5)

<!-- 简洁登录页面 --> <template><view class"login-bg"><image class"img-a" src"https://zhoukaiwen.com/img/loginImg/2.png"></image><image class"img-b" src"https://zhoukaiwen.com/im…...

关于OceanBase 多模一体化的浅析

在当今多元化的业务生态中&#xff0c;各行各业对数据库系统的需求各有侧重。举例来说&#xff0c;金融风控领域对数据库的高效事务处理&#xff08;TP&#xff09;和分析处理&#xff08;AP&#xff09;能力有着严格要求&#xff1b;游戏行业则更加注重文档数据库的灵活性和性…...

快速git

下载 sudo apt install git配置 $ git config --global user.name "John Doe" $ git config --global user.email johndoeexample.com没有空格可以不加双引号如果~/.ssh没有先创建&#xff08;下一步用&#xff09; ssh方式制作密钥 github解释 #以邮箱作为标签…...

欺诈文本分类检测(十四):GPTQ量化模型

1. 引言 量化的本质&#xff1a;通过将模型参数从高精度&#xff08;例如32位&#xff09;降低到低精度&#xff08;例如8位&#xff09;&#xff0c;来缩小模型体积。 本文将采用一种训练后量化方法GPTQ&#xff0c;对前文已经训练并合并过的模型文件进行量化&#xff0c;通…...

2024.9.14(RC和RS)

一、replicationcontroller &#xff08;RC&#xff09; 1、更改镜像站 [rootk8s-master ~]# vim /etc/docker/daemon.json {"registry-mirrors": ["https://do.nark.eu.org","https://dc.j8.work","https://docker.m.daocloud.io",&…...

【算法随想录04】KMP 字符串匹配算法

这是字符串模式匹配经典算法。 给定一个文本 t 和一个字符串 s&#xff0c;我们尝试找到并展示 s 在 t 中的所有出现&#xff08;occurrence&#xff09;。 #include<bits/stdc.h>using namespace std;vector<int> KMP(string s) {int n s.size();vector<int&g…...

TCP和MQTT通信协议

协议分层 网络分层 协议应用层 Co AP MQTT HTTP传输层 UDP TCP网络层 IP链路层 Enternet 网络分层中最…...

Python Pickle 与 JSON 序列化详解:存储、反序列化与对比

Python Pickle 与 JSON 序列化详解&#xff1a;存储、反序列化与对比 文章目录 Python Pickle 与 JSON 序列化详解&#xff1a;存储、反序列化与对比一 功能总览二 Pickle1 应用2 序列化3 反序列化4 系统资源对象1&#xff09;不能被序列化的系统资源对象2&#xff09;强行序列…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

基于当前项目通过npm包形式暴露公共组件

1.package.sjon文件配置 其中xh-flowable就是暴露出去的npm包名 2.创建tpyes文件夹&#xff0c;并新增内容 3.创建package文件夹...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

Android15默认授权浮窗权限

我们经常有那种需求&#xff0c;客户需要定制的apk集成在ROM中&#xff0c;并且默认授予其【显示在其他应用的上层】权限&#xff0c;也就是我们常说的浮窗权限&#xff0c;那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

PAN/FPN

import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...