当前位置: 首页 > news >正文

算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143. 最长公共子序列

300. 最长递增子序列

1.dp定义:dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

2.递推公式:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

 3.初始化:每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674. 最长连续递增序列

1.dp定义:dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

2.递推公式:如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

 3.dp[i]应该初始1;        

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718. 最长重复子数组

1.dp定义:以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。

2.递推公式:当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

3.初始化:根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

注:如果dp数组以i,j为结尾,那么初始化时,应该为dp[i] = dp[j]时初始化为1

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

1143. 最长公共子序列

和上一题的区别是不要求是连续的了,但要有相对顺序

1.dp含义:dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

2.递推公式:如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};

相关文章:

算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143. 最长公共子序列

300. 最长递增子序列 1.dp定义&#xff1a;dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度 2.递推公式&#xff1a;if (nums[i] > nums[j]) dp[i] max(dp[i], dp[j] 1); 注意这里不是要dp[i] 与 dp[j] 1进行比较&#xff0c;而是我们要取dp[j] 1的最大值…...

go 笔记

数据结构与 方法&#xff08;增删改查&#xff09; 安装goland,注意版本是2024.1.1&#xff0c;不是2024.2.1&#xff0c;软件下载地址也在链接中提供了 ‘go’ 不是内部或外部命令&#xff0c;也不是可运行的程序 或批处理文件。 在 Windows 搜索栏中输入“环境变量”&#…...

路由等保测评

1.身份鉴别 应对登录的用户进行身份标识和鉴别&#xff0c; 身份标识具有唯一性&#xff0c;身份鉴别信息具有复杂度要求并定期更换。 可以使用“ service password-encryption"命令对存储在配置文件中的所有口令和类似数据进行加密&#xff0c; 以避免攻击者通过读取配…...

C# 反射之动态生成dll/exe

这个可能应该属于反射的高级使用范围了&#xff0c;平常在项目中使用的人估计也不是很多。由于使用反射的话会降低性能&#xff0c;比如之前用到的GetValue、SetValue等之类&#xff0c;但是使用这种方式会大大提高效率&#xff0c;在这里我只想说&#xff0c;都直接写IL指令了…...

Rust 所有权 Slices

文章目录 发现宝藏1. Slice 的基础知识1.1 什么是 Slice&#xff1f;1.2 如何创建 Slice&#xff1f; 2. 处理字符串 Slice2.1 字符串的 Slice2.2 字符串的 Unicode 和切片 3. 在函数中使用 Slice3.1 传递 Slice 给函数3.2 可变 Slice 的函数 4. 复杂示例4.1 处理多维数组的 Sl…...

windows 安全与网络管理问题

问题&#xff1a;当编写的脚本或程序运行的时候&#xff0c;可能被windows阻止访问网络甚至被删除 避免被删除 wini 进入设置界面 -> 选择更新与安全 -> 选择windwos defender -> 点击添加排除项&#xff0c;将指定的文件或目录排除&#xff0c;避免被软件删除 允许…...

基于Python实现一个庆祝国庆节的小程序

功能&#xff1a; 添加互动功能&#xff1a;允许用户选择不同的祝福语或者查询不同的国庆节信息。动态背景音乐&#xff1a;播放国庆节相关的背景音乐。增加节日小测验&#xff1a;提供一些关于国庆节的趣味小测验&#xff0c;让用户参与。增强图形用户界面 (GUI)&#xff1a;…...

Anaconda 安装与使用教程

Anaconda 安装与使用教程 介绍 Anaconda 是一个用于科学计算的 Python 和 R 的发行版&#xff0c;它包含了众多流行的科学计算、数据分析、机器学习等领域的库。本教程旨在帮助初学者快速上手 Anaconda&#xff0c;并学会如何使用其管理环境以及安装包。 第一步&#xff1a;…...

时序预测SARIMAX模型

1. 项目背景 本文基于kaggle平台相关竞赛项目&#xff0c;具体连接如下&#xff1a; Time Series Forecasting With SARIMAX 基本信息如内容说明、数据集、已提交代码、当前得分排名以及比赛规则等&#xff0c;如图【1】所示&#xff0c;可以认真阅读。 图 1 2. 数据读取 …...

gin集成jaeger中间件实现链路追踪

1. 背景 新业务线带来新项目启动&#xff0c;需要改进原有项目的基础框架和组件能力&#xff0c;以提升后续开发和维护效率。项目搭建主要包括技术选型、框架搭建、基础服务搭建等。这其中就涉及到链路追踪的内容&#xff0c;结合其中的踩坑情况&#xff0c;用一篇文章来说明完…...

前端层面----监控与埋点

前言&#xff1a; 站在产品的视角&#xff0c;经常会问如下几个问题&#xff1a; 产品有没有用户使用 用户用得怎么样 系统会不会经常出现异常 如何更好地满足用户需求服务用户 当站在技术视角时&#xff0c;经常会问如下几个问题&#xff1a; 系统出现异常的频率如何 异常…...

linux Command

linux Command 1. 系统监控命令 1.1 top top [param] top -H -p pid&#xff0c;查看进程pid下面的子线程。-b以处理模式操作-c显示完整的命令行而不只是显示命令名。-d 屏幕刷新间隔时间。-l 忽略失效过程。-s 保密模式。-S 累积模式。-u 【用户名】 指定用户名。-p 【进程…...

uniapp登录页面( 适配:pc、小程序、h5)

<!-- 简洁登录页面 --> <template><view class"login-bg"><image class"img-a" src"https://zhoukaiwen.com/img/loginImg/2.png"></image><image class"img-b" src"https://zhoukaiwen.com/im…...

关于OceanBase 多模一体化的浅析

在当今多元化的业务生态中&#xff0c;各行各业对数据库系统的需求各有侧重。举例来说&#xff0c;金融风控领域对数据库的高效事务处理&#xff08;TP&#xff09;和分析处理&#xff08;AP&#xff09;能力有着严格要求&#xff1b;游戏行业则更加注重文档数据库的灵活性和性…...

快速git

下载 sudo apt install git配置 $ git config --global user.name "John Doe" $ git config --global user.email johndoeexample.com没有空格可以不加双引号如果~/.ssh没有先创建&#xff08;下一步用&#xff09; ssh方式制作密钥 github解释 #以邮箱作为标签…...

欺诈文本分类检测(十四):GPTQ量化模型

1. 引言 量化的本质&#xff1a;通过将模型参数从高精度&#xff08;例如32位&#xff09;降低到低精度&#xff08;例如8位&#xff09;&#xff0c;来缩小模型体积。 本文将采用一种训练后量化方法GPTQ&#xff0c;对前文已经训练并合并过的模型文件进行量化&#xff0c;通…...

2024.9.14(RC和RS)

一、replicationcontroller &#xff08;RC&#xff09; 1、更改镜像站 [rootk8s-master ~]# vim /etc/docker/daemon.json {"registry-mirrors": ["https://do.nark.eu.org","https://dc.j8.work","https://docker.m.daocloud.io",&…...

【算法随想录04】KMP 字符串匹配算法

这是字符串模式匹配经典算法。 给定一个文本 t 和一个字符串 s&#xff0c;我们尝试找到并展示 s 在 t 中的所有出现&#xff08;occurrence&#xff09;。 #include<bits/stdc.h>using namespace std;vector<int> KMP(string s) {int n s.size();vector<int&g…...

TCP和MQTT通信协议

协议分层 网络分层 协议应用层 Co AP MQTT HTTP传输层 UDP TCP网络层 IP链路层 Enternet 网络分层中最…...

Python Pickle 与 JSON 序列化详解:存储、反序列化与对比

Python Pickle 与 JSON 序列化详解&#xff1a;存储、反序列化与对比 文章目录 Python Pickle 与 JSON 序列化详解&#xff1a;存储、反序列化与对比一 功能总览二 Pickle1 应用2 序列化3 反序列化4 系统资源对象1&#xff09;不能被序列化的系统资源对象2&#xff09;强行序列…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

练习(含atoi的模拟实现,自定义类型等练习)

一、结构体大小的计算及位段 &#xff08;结构体大小计算及位段 详解请看&#xff1a;自定义类型&#xff1a;结构体进阶-CSDN博客&#xff09; 1.在32位系统环境&#xff0c;编译选项为4字节对齐&#xff0c;那么sizeof(A)和sizeof(B)是多少&#xff1f; #pragma pack(4)st…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...