算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143. 最长公共子序列
300. 最长递增子序列
1.dp定义:dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度
2.递推公式:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);
注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值。
3.初始化:每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.
class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};
674. 最长连续递增序列
1.dp定义:dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]。
2.递推公式:如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。
即:dp[i] = dp[i - 1] + 1;
因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。
3.dp[i]应该初始1;
class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};
718. 最长重复子数组
1.dp定义:以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。
2.递推公式:当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;
根据递推公式可以看出,遍历i 和 j 要从1开始!
3.初始化:根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!
但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;
所以dp[i][0] 和dp[0][j]初始化为0。
举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。
注:如果dp数组以i,j为结尾,那么初始化时,应该为dp[i] = dp[j]时初始化为1
class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};
1143. 最长公共子序列
和上一题的区别是不要求是连续的了,但要有相对顺序
1.dp含义:dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]
2.递推公式:如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;
如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。
即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};
相关文章:

算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143. 最长公共子序列
300. 最长递增子序列 1.dp定义:dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度 2.递推公式:if (nums[i] > nums[j]) dp[i] max(dp[i], dp[j] 1); 注意这里不是要dp[i] 与 dp[j] 1进行比较,而是我们要取dp[j] 1的最大值…...

go 笔记
数据结构与 方法(增删改查) 安装goland,注意版本是2024.1.1,不是2024.2.1,软件下载地址也在链接中提供了 ‘go’ 不是内部或外部命令,也不是可运行的程序 或批处理文件。 在 Windows 搜索栏中输入“环境变量”&#…...
路由等保测评
1.身份鉴别 应对登录的用户进行身份标识和鉴别, 身份标识具有唯一性,身份鉴别信息具有复杂度要求并定期更换。 可以使用“ service password-encryption"命令对存储在配置文件中的所有口令和类似数据进行加密, 以避免攻击者通过读取配…...

C# 反射之动态生成dll/exe
这个可能应该属于反射的高级使用范围了,平常在项目中使用的人估计也不是很多。由于使用反射的话会降低性能,比如之前用到的GetValue、SetValue等之类,但是使用这种方式会大大提高效率,在这里我只想说,都直接写IL指令了…...
Rust 所有权 Slices
文章目录 发现宝藏1. Slice 的基础知识1.1 什么是 Slice?1.2 如何创建 Slice? 2. 处理字符串 Slice2.1 字符串的 Slice2.2 字符串的 Unicode 和切片 3. 在函数中使用 Slice3.1 传递 Slice 给函数3.2 可变 Slice 的函数 4. 复杂示例4.1 处理多维数组的 Sl…...
windows 安全与网络管理问题
问题:当编写的脚本或程序运行的时候,可能被windows阻止访问网络甚至被删除 避免被删除 wini 进入设置界面 -> 选择更新与安全 -> 选择windwos defender -> 点击添加排除项,将指定的文件或目录排除,避免被软件删除 允许…...
基于Python实现一个庆祝国庆节的小程序
功能: 添加互动功能:允许用户选择不同的祝福语或者查询不同的国庆节信息。动态背景音乐:播放国庆节相关的背景音乐。增加节日小测验:提供一些关于国庆节的趣味小测验,让用户参与。增强图形用户界面 (GUI):…...
Anaconda 安装与使用教程
Anaconda 安装与使用教程 介绍 Anaconda 是一个用于科学计算的 Python 和 R 的发行版,它包含了众多流行的科学计算、数据分析、机器学习等领域的库。本教程旨在帮助初学者快速上手 Anaconda,并学会如何使用其管理环境以及安装包。 第一步:…...

时序预测SARIMAX模型
1. 项目背景 本文基于kaggle平台相关竞赛项目,具体连接如下: Time Series Forecasting With SARIMAX 基本信息如内容说明、数据集、已提交代码、当前得分排名以及比赛规则等,如图【1】所示,可以认真阅读。 图 1 2. 数据读取 …...

gin集成jaeger中间件实现链路追踪
1. 背景 新业务线带来新项目启动,需要改进原有项目的基础框架和组件能力,以提升后续开发和维护效率。项目搭建主要包括技术选型、框架搭建、基础服务搭建等。这其中就涉及到链路追踪的内容,结合其中的踩坑情况,用一篇文章来说明完…...

前端层面----监控与埋点
前言: 站在产品的视角,经常会问如下几个问题: 产品有没有用户使用 用户用得怎么样 系统会不会经常出现异常 如何更好地满足用户需求服务用户 当站在技术视角时,经常会问如下几个问题: 系统出现异常的频率如何 异常…...
linux Command
linux Command 1. 系统监控命令 1.1 top top [param] top -H -p pid,查看进程pid下面的子线程。-b以处理模式操作-c显示完整的命令行而不只是显示命令名。-d 屏幕刷新间隔时间。-l 忽略失效过程。-s 保密模式。-S 累积模式。-u 【用户名】 指定用户名。-p 【进程…...

uniapp登录页面( 适配:pc、小程序、h5)
<!-- 简洁登录页面 --> <template><view class"login-bg"><image class"img-a" src"https://zhoukaiwen.com/img/loginImg/2.png"></image><image class"img-b" src"https://zhoukaiwen.com/im…...

关于OceanBase 多模一体化的浅析
在当今多元化的业务生态中,各行各业对数据库系统的需求各有侧重。举例来说,金融风控领域对数据库的高效事务处理(TP)和分析处理(AP)能力有着严格要求;游戏行业则更加注重文档数据库的灵活性和性…...
快速git
下载 sudo apt install git配置 $ git config --global user.name "John Doe" $ git config --global user.email johndoeexample.com没有空格可以不加双引号如果~/.ssh没有先创建(下一步用) ssh方式制作密钥 github解释 #以邮箱作为标签…...

欺诈文本分类检测(十四):GPTQ量化模型
1. 引言 量化的本质:通过将模型参数从高精度(例如32位)降低到低精度(例如8位),来缩小模型体积。 本文将采用一种训练后量化方法GPTQ,对前文已经训练并合并过的模型文件进行量化,通…...

2024.9.14(RC和RS)
一、replicationcontroller (RC) 1、更改镜像站 [rootk8s-master ~]# vim /etc/docker/daemon.json {"registry-mirrors": ["https://do.nark.eu.org","https://dc.j8.work","https://docker.m.daocloud.io",&…...
【算法随想录04】KMP 字符串匹配算法
这是字符串模式匹配经典算法。 给定一个文本 t 和一个字符串 s,我们尝试找到并展示 s 在 t 中的所有出现(occurrence)。 #include<bits/stdc.h>using namespace std;vector<int> KMP(string s) {int n s.size();vector<int&g…...
TCP和MQTT通信协议
协议分层 网络分层 协议应用层 Co AP MQTT HTTP传输层 UDP TCP网络层 IP链路层 Enternet 网络分层中最…...
Python Pickle 与 JSON 序列化详解:存储、反序列化与对比
Python Pickle 与 JSON 序列化详解:存储、反序列化与对比 文章目录 Python Pickle 与 JSON 序列化详解:存储、反序列化与对比一 功能总览二 Pickle1 应用2 序列化3 反序列化4 系统资源对象1)不能被序列化的系统资源对象2)强行序列…...
web vue 项目 Docker化部署
Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段: 构建阶段(Build Stage):…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
Java - Mysql数据类型对应
Mysql数据类型java数据类型备注整型INT/INTEGERint / java.lang.Integer–BIGINTlong/java.lang.Long–––浮点型FLOATfloat/java.lang.FloatDOUBLEdouble/java.lang.Double–DECIMAL/NUMERICjava.math.BigDecimal字符串型CHARjava.lang.String固定长度字符串VARCHARjava.lang…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)
目录 一、👋🏻前言 二、😈sinx波动的基本原理 三、😈波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、🌊波动优化…...
动态 Web 开发技术入门篇
一、HTTP 协议核心 1.1 HTTP 基础 协议全称 :HyperText Transfer Protocol(超文本传输协议) 默认端口 :HTTP 使用 80 端口,HTTPS 使用 443 端口。 请求方法 : GET :用于获取资源,…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

DeepSeek源码深度解析 × 华为仓颉语言编程精粹——从MoE架构到全场景开发生态
前言 在人工智能技术飞速发展的今天,深度学习与大模型技术已成为推动行业变革的核心驱动力,而高效、灵活的开发工具与编程语言则为技术创新提供了重要支撑。本书以两大前沿技术领域为核心,系统性地呈现了两部深度技术著作的精华:…...

GraphRAG优化新思路-开源的ROGRAG框架
目前的如微软开源的GraphRAG的工作流程都较为复杂,难以孤立地评估各个组件的贡献,传统的检索方法在处理复杂推理任务时可能不够有效,特别是在需要理解实体间关系或多跳知识的情况下。先说结论,看完后感觉这个框架性能上不会比Grap…...