当前位置: 首页 > news >正文

CPU 和 GPU:为什么GPU更适合深度学习?

目录

什么是 CPU ?

什么是 GPU ?

GPU vs CPU 差异性对比分析

GPU 是如何工作的 ?

GPU 与 CPU 是如何协同工作的 ?

GPU vs CPU 类型解析

GPU 应用于深度学习


什么是 CPU ?

CPU(中央处理器)是计算机系统中最核心的组件之一,负责执行几乎所有程序运行所需的指令。作为一种通用处理器,旨在处理各种不同类型的任务,从操作系统的运行,到应用程序的执行,再到复杂的计算、文档编辑、播放电影和音乐、网页浏览等。

     现代 CPU 通常拥有多个处理核心,每个核心都可以独立处理指令,从而提高多任务处理的能力。这种多核设计使得 CPU 可以在一定程度上同时处理多个任务,虽然每个任务的执行仍然是顺序完成的。

     需要注意的是,CPU 的处理方式以“顺序处理”为主。也就是说,CPU 会逐步、一条接一条地执行指令,这与并行处理不同。虽然多核技术和超线程技术可以在一定程度上缓解这种顺序处理的局限,但它并不是为大规模并行计算设计的。相比于能够一次处理大量数据的图形处理器(GPU),CPU 更适合处理复杂且需要精确计算的任务。

     在 CPU 架构中,有几个关键的标准组件,它们共同协作,确保中央处理器能够高效完成各种计算任务。这些组件包括内核、缓存、内存管理单元(MMU)以及 CPU 时钟和控制单元等。

所有这些组件共同协作,创建了一个能够高效执行多任务并行的处理环境。当 CPU 时钟驱动核心活动时,多个核心之间以极高的速度切换任务,从而使得 CPU 能够在数百个不同的任务之间每秒进行快速切换。例如,CPU可 以在后台处理文件操作的同时,运行应用程序、管理网络连接,并保持桌面显示的流畅运行。

     总的来说,CPU(中央处理器)是整个计算机系统的核心,协调和管理所有计算任务。从数据输入到最终的输出,每一个步骤都依赖于 CPU 的指令处理和计算能力。无论是打开应用程序、运行复杂的模拟、编译软件,还是处理图形、视频和音频,CPU 都是确保系统能够高效运行的关键角色

什么是 GPU ?

   GPU(图形处理单元)的诞生,初衷是为了专门应对渲染复杂图形和加速视频处理的需求。随着计算机图形技术的发展,实时 3D 图形的渲染需求逐渐增多,传统的CPU(中央处理器)难以高效处理这些繁重的计算任务。GPU 的出现大大缓解了这一负担,通过其独特的架构将大量的图形处理操作从 CPU 中剥离出来,从而极大地提升了系统的图形处理能力。

     GPU 的架构设计非常独特,由成百上千个小型处理单元组成,每个处理单元能够独立并行执行指令。这种高度并行的处理能力使 GPU 能够同时处理海量数据,这也是其与多核 CPU 的相似之处。CPU 虽然也有多核设计,但每个核心的任务通常是串行执行的。而 GPU 的每个小型处理单元(通常称为“流处理器”或“CUDA 核心”)则可以相互并行执行不同的指令集,使得 GPU 能够在短时间内处理大量计算任务

在图形渲染领域,GPU 的并行计算能力展现得尤为明显。渲染一个复杂的 3D 场景需要进行大量的数学计算,这些计算通常涉及到诸如光线追踪、阴影处理、纹理贴图和颜色渲染等高复杂度的操作。每个屏幕上显示的画面都由数百甚至数千个几何多边形组成,而每个多边形都有其独立的颜色、光照反射、运动轨迹等物理特性。所有这些计算都需要在极短的时间内完成,尤其是在图形密集型应用(如视频游戏、3D动画制作等)中,每秒钟画面的刷新和渲染速度要求非常高。

     CPU(中央处理器)虽然在逻辑处理和一般计算任务上表现出色,但它并非为这种海量并行处理设计的。图形渲染的复杂性超出了 CPU 的处理能力,因为它必须在极短的时间内完成大量涉及数学、几何和光线计算的操作。为了保证游戏、影视特效、虚拟现实等应用能够流畅运行,GPU 通过其强大的并行计算架构接管了这些复杂的任务

GPU vs CPU 差异性对比分析

从本质上来讲,GPU 在功能上与 CPU 有相似之处:两者都由内核、内存以及其他关键组件组成。然而,尽管二者共享一些基本结构特征,但工作原理却大相径庭。         GPU 的设计初衷是为了实现高效的大规模并行计算,与 CPU 不同的是,它并不注重通过频繁的上下文切换来管理多个任务。相反,GPU 依赖于其数百甚至上千个相对较小的处理内核来同时处理大量数据。这种并行处理的架构使 GPU 在处理图形渲染和科学计算等需要同时处理大量数据的任务时具备无与伦比的优势。

通常而言,GPU 的每个内核通常没有 CPU 内核那么强大,在单线程任务上的性能远不及 CPU。CPU 核心专注于快速、顺序地处理复杂指令集,并且在执行频繁切换和多任务操作时表现出色。而 GPU 的内核则更为简化,每个内核的任务相对独立和单一,从而使得它们能够大量并行地执行同一类型的简单操作。正基于此种架构,使得 GPU 可以同时处理海量数据并迅速完成计算任务,尤其是在图形渲染、科学计算以及人工智能训练中表现出色。

     GPU 在其架构上存在的另一限制是与其他硬件的互操作性相对较差。与 CPU 相比,GPU 在与不同硬件 API 或非本地内存的交互上往往效率不高。这意味着在某些需要频繁的跨设备数据交换或非本地内存管理的应用场景中,GPU 的表现不如 CPU 来得灵活高效。

     然而,GPU 真正的优势在于并行处理大量数据的能力。当面临需要快速渲染复杂图像或执行大规模矩阵计算的任务时,GPU 的表现是无可比拟的。它能够接收大批量的任务指令,并通过数百上千个内核并行处理这些数据。这使得 GPU 可以在短时间内处理和推送大量已经处理好的数据,极大地提升了任务的执行速度。在图形渲染过程中,GPU 不需要像 CPU 那样逐步处理每个多边形或像素,而是通过批处理方式接受图形渲染的指令,并以极快的速度将处理结果推送到显示设备上。

GPU 是如何工作的 ?

现代 GPU 通常采用大规模并行架构设计,包含数以千计的小型处理核心。每个处理核心都拥有自己的寄存器和共享内存块,用于存储数据和程序指令。GPU 本身还配备了一定容量的板载内存(称为“Device Memory”或显存),用于存储大量运算数据及中间结果。

     通常而言,不同 GPU 的具体工作方式会有所不同,取决于其设计用途、制造商、芯片架构以及协调 GPU 运行的软件和编程框架。例如,英伟达公司开发的 CUDA(Compute Unified Device Architecture)并行计算平台,专门为开发人员提供了一套工具和 API,使他们能够充分利用 GPU 的并行计算能力,针对广泛的通用并行计算应用进行 GPU 加速。

    根据与主机系统的集成方式不同,GPU可以分为独立显卡 GPU(离散 GPU)和集成 GPU(iGPU)两大类:

     1. 离散 GPU

     离散 GPU 是一种独立的专用芯片,主要用于图形渲染、科学计算、机器学习等密集型并行计算任务。离散 GPU 通常安装在插入主板的独立显卡上。除了用于图形渲染外,现代离散 GPU 也广泛应用于深度学习训练、科学模拟等领域,用作通用并行加速器。

     2. 集成 GPU

     相对比于离散 GPU,集成 GPU 则是将 GPU 核心与 CPU 集成在同一个芯片组(SoC)上的设计。最初的 iGPU 主要应用于普通桌面计算和低端游戏,如英特尔酷睿和赛扬系列处理器的集成显卡。近年来,随着移动设备的飞速发展,ARM 等公司也推出了将 CPU 和 GPU 高度集成到单芯片 SoC 中的产品,广泛应用于智能手机、平板电脑等移动设备。

     除了物理 GPU 之外,虚拟 GPU(vGPU)也逐渐兴起。vGPU 是基于软件虚拟化技术实现的 GPU,可在云服务器实例上与其他虚拟 GPU 共享底层物理 GPU 资源。用户可灵活地调配和使用 vGPU 资源,而无需关注底层硬件的具体情况,极大简化了 GPU 加速计算的部署和管理。

     无论是离散 GPU、集成 GPU 还是虚拟 GPU,三者都为现代计算系统提供了强大的并行计算加速能力,显著提升了图形渲染、科学计算、人工智能等领域的性能表现,推动了各个行业的技术创新和发展。

GPU 与 CPU 是如何协同工作的 ?

     CPU(中央处理单元)和 GPU(图形处理单元)是现代计算系统中两个互补的重要组成部分,两者通过分工协作,发挥各自的优势,从而极大提高了应用程序的数据吞吐量和并发计算能力。

     GPU 最初被设计用于生成计算机图形和视频游戏的视觉效果,以满足日益增长的图形渲染需求。自2010年代初开始,由于 GPU 强大的并行计算能力,其应用范围逐渐扩展到需要大规模数据并行处理的领域,如科学计算、人工智能等,从而加速了这些领域的计算过程。

     1. ‍‍CPU:通用计算的引擎

     CPU 擅长处理各种通用计算任务,例如操作系统管理、应用程序执行、数据处理等。它具有高度灵活的指令集,可以执行复杂的逻辑操作。由于其串行处理的特性,CPU在处理顺序执行的任务时效率较高。

     2. GPU:并行计算的加速器

     GPU最初设计用于渲染图形,其核心特点是高度并行的计算架构。它包含数千个流处理器,能够同时执行大量的简单指令。这种并行处理能力使得 GPU 在处理需要大量重复计算的任务时具有显著优势,例如矩阵运算、图像处理等。

3. CPU 与 GPU 的协同工作

    其实,在整个计算机生态体系中,CPU 和 GPU在系统中分工合作,相辅相成。具体可参考如下:

    (1)CPU 负责整体控制: CPU 负责操作系统管理、应用程序调度、内存管理等任务,并协调 GPU 的运行。

    (2)GPU 负责加速计算: GPU 将计算密集型任务,如深度学习模型的训练、图像渲染等,卸载到 GPU上执行,从而加速应用程序的运行速度。

     (3)异构计算: 现代计算系统采用了异构计算的架构,将 CPU 和 GPU 结合起来,以发挥各自的优势。

GPU vs CPU 类型解析

1. CPU 类型:

     CPU(中央处理器) 是计算机的“大脑”,负责执行各种指令。目前市场上主要有以下几种类型的 CPU,具体可参考:‍

  •      英特尔酷睿(Intel Core)处理器: 作为 PC 市场的老牌霸主,英特尔酷睿系列处理器以其出色的性能和广泛的兼容性而闻名。无论是办公、娱乐还是专业创作,酷睿处理器都能胜任。

  •      AMD Ryzen 处理器: AMD 的 Ryzen 系列处理器凭借出色的性价比和多核性能,近年来迅速崛起。在游戏、内容创作等领域,Ryzen 处理器与酷睿处理器不相上下,甚至在某些方面表现更佳。

  •      ARM 处理器: ARM 处理器以低功耗、高性能的特点而著称,广泛应用于智能手机、平板电脑、物联网设备等移动设备中。ARM 架构的能效比使其成为移动设备的首选。

     此外,值得一提的是 APU(加速处理单元)。APU 将 CPU 和 GPU 集成到一个芯片上,可以提供更平衡的性能,特别适合对图形性能要求不高但又需要一定计算能力的设备。

2. GPU 类型

      GPU(图形处理单元) 是专门设计用于处理图形和图像的硬件,在游戏、视频编辑、3D 建模、科学计算等领域发挥着越来越重要的作用。目前市场上主要有以下几种类型的 GPU,具体可参考:

  •   NVIDIA GeForce Cards: NVIDIA 的 GeForce 系列显卡以其强大的游戏性能和丰富的驱动支持而深受游戏玩家喜爱。在高端游戏市场,GeForce 显卡一直处于领先地位。其采用 CUDA 核心,支持实时光线追踪、DLSS 等先进技术,为玩家带来逼真的视觉体验。

  •    AMD Radeon Cards: AMD 的 Radeo n显卡在游戏性能和专业图形应用方面表现出色,同时价格相对亲民。Radeon 显卡在专业领域也有一定的市场份额。其采用 RDNA 架构,在游戏和内容创作方面具有竞争力。

  •    集成 GPU: 集成 GPU 通常内置于 CPU 中,体积小、功耗低,适合笔记本电脑、平板电脑等移动设备。虽然性能不及独立显卡,但对于日常办公、上网等任务已经足够。

  •    人工智能专用 GPU: 随着人工智能技术的快速发展,专门针对 AI 计算任务设计的 GPU 应运而生。例如,NVIDIA 的 Tesla 系列和 AMD 的 Radeon Instinct 系列 GPU 在深度学习、机器学习等领域具有强大的加速能力。这些 GPU 拥有大量的 CUDA 核心或计算单元,以及高带宽的内存,能够高效处理大规模并行计算任务。

     此外,GPU 的分类还可以从架构上进行划分,具体:

  •    流处理器架构: NVIDIA 的 CUDA 架构和 AMD 的 RDNA 架构都是典型的流处理器架构。流处理器是 GPU 的基本计算单元,它们并行处理大量的线程。

  •    Tensor 核心架构: 专为深度学习设计的 Tensor 核心能够高效处理矩阵运算,加速神经网络的训练和推理。

GPU 应用于深度学习

作为一种基于人工神经网络(ANN)的技术,深度学习能够从庞大的数据集中提取出高度精确的预测。这种能力使得深度学习在各个行业中得到了广泛应用,无论是自动驾驶、医疗诊断,还是金融预测,都离不开深度学习模型的支持。

     为了从海量信息中提取出有价值的预测,模型训练需要在尽可能短的时间内处理大量的数据。这一过程中,需要极为强大的计算能力来支持,否则将难以在合理的时间范围内完成训练任务。简单来说,深度学习模型的训练不仅需要高效的算法,还需要充足的计算资源,以应对不断增长的数据量和复杂的计算需求。

     当他们尝试从大规模训练模型中提取最佳性能时,往往会遇到计算能力的瓶颈,开始体验到处理延迟的增加。随着数据集的规模扩大,过去几分钟内就能完成的任务,现在可能需要数小时、甚至数周的时间才能完成。这种延迟不仅影响工作效率,还可能阻碍模型的优化与迭代。

     在过去,单个强大的 CPU 内核曾是高计算任务的首选,但随着任务复杂度的增加,这一模式已逐渐被拥有并行处理能力的多处理单元所取代。这些单元能够同时执行大量计算任务,并在处理海量数据时表现出色。而这种并行计算单元的最佳代表,正是 GPU(图形处理单元)。

     起初,GPU 主要用于加速图形渲染,生成图形帧的速度远超传统的 CPU,这使得 GPU 成为流畅图形体验的核心组件。然而,随着深度学习的兴起,人们发现 GPU 不仅在图形处理上表现优异,其架构也非常适合执行需要大规模并行计算的任务,尤其是神经网络的训练。

     例如,在深度学习中,矩阵运算是神经网络训练的核心操作,而矩阵运算本质上属于并行计算。GPU 的架构正好能够高效地执行这些并行计算任务,因此在处理大规模矩阵运算时,GPU 表现出了极大的优势。这种能力使得 GPU 成为了现代深度学习中不可或缺的计算工具。

     综上所述,随着人工智能、大数据等技术的不断发展,对计算能力的需求将持续增长。GPU 作为加速计算的重要工具,其应用范围将不断拓展。未来,我们不仅会在深度学习、机器学习领域看到 GPU 的身影,在自动驾驶、生物医药、金融科技等领域,GPU 也将发挥关键作用。

相关文章:

CPU 和 GPU:为什么GPU更适合深度学习?

目录 什么是 CPU ? 什么是 GPU ? GPU vs CPU 差异性对比分析 GPU 是如何工作的 ? GPU 与 CPU 是如何协同工作的 ? GPU vs CPU 类型解析 GPU 应用于深度学习 什么是 CPU ? CPU(中央处理器)…...

【机器学习】:解锁数据背后的智慧宝藏——深度探索与未来展望

欢迎来到 破晓的历程的 博客 ⛺️不负时光,不负己✈️ 文章目录 引言一、深入机器学习的内在机制二、最新进展与趋势三、对未来社会的深远影响结语 引言 在上一篇博客中,我们初步探讨了机器学习如何成为解锁数据背后智慧的关键工具。现在,让…...

【Kubernetes】常见面试题汇总(十八)

目录 55.简述 Kubernetes 共享存储的作用? 56.简述 Kubernetes 数据持久化的方式有哪些? 57.简述 Kubernetes PV 和 PVC ? 58.简述 Kubernetes PV 生命周期内的阶段? 55.简述 Kubernetes 共享存储的作用? Kubernet…...

无限边界:现代整合安全如何保护云

尽管云计算和远程工作得到广泛采用,零信任网络也稳步推广,但边界远未消失。相反,它已被重新定义。就像数学分形的边界一样,现代网络边界现在无限延伸到任何地方。 不幸的是,传统工具在现代无限边界中效果不佳。现代边…...

HTML贪吃蛇游戏

文章目录 贪吃蛇游戏 运行效果代码 贪吃蛇游戏 贪吃蛇是一款经典的休闲益智游戏。本文将通过HTML5和JavaScript详细解析如何实现一个简易版的贪吃蛇游戏。游戏的主要逻辑包括蛇的移动、碰撞检测、食物生成等功能。以下是游戏的完整代码及注释解析。(纯属好玩&#…...

HTML 揭秘:HTML 编码快速入门

HTML 揭秘:HTML 编码快速入门 一 . 前端知识介绍二 . HTML 介绍三 . HTML 快速入门四 . HTML 编辑器 - VSCode4.1 插件安装4.2 修改主题配色4.3 修改快捷键4.4 设置自动保存4.5 创建 HTML 文件4.5 书写 HTML 代码4.6 常见快捷键 五 . 基础标签5.1 字体标签5.1.1 col…...

Ubuntu22.04系统安装opencv步骤简述及问题解决方法

前言 opencv是一个功能强大、开源且跨平台的计算机视觉库,适用于多种编程语言和操作系统,能够帮助开发者构建各种视觉项目。其模块众多,提供了诸多功能,能够进行图像处理、视频处理等等。比如:Highgui模块提供图像用户…...

移情别恋c++ ദ്ദി˶ー̀֊ー́ ) ——13.mapset

1. 关联式容器 在初阶阶段,我们已经接触过STL中的部分容器,比如:vector、list、deque、 forward_list(C11)等,这些容器统称为序列式容器,因为其底层为线性序列的数据结构,里面 存储的是元素本身。那什么是关…...

【webpack4系列】webpack基础用法(二)

文章目录 entryoutputloaderpluginmode前端构建基础配置关联HTML插件html-webpack-plugin构建 CSS 解析 ES6和React JSX解析 ES6解析 React JSX 解析CSS、Less和Sass解析CSS解析Less解析sass 解析图片和字体资源解析:解析图片资源解析:解析字体资源解析&…...

Python Pyvis库创建交互式网络图 高级功能详解

文章目录 动态网络图图布局调整扩展到大规模网络动态网络图 Pyvis支持创建动态网络图,通过时间轴展示网络图的演化过程。 需要使用set_options函数,参数必须为json格式。动态网络图支持添加点和边。 下面是一个简单的动态网络图示例: # 动态网络图示例 from pyvis.networ…...

Linux服务器上安装git lfs命令

有时候,需要批量下载数据集时要用到git lfs命令 首先,使用pip install git-lfs安装,会发现使用时仍然提示:git: lfs is not a git command. See git --help. 这就意味着安装不成功。 因此,需要通过如下途径手动安装&a…...

S100A9:鸡支原体感染中的免疫调控“双面间谍”【AbMole】

在生物学研究的广阔天地里,总有一些分子扮演着令人意想不到的角色。今天,我们要探索的主角是S100A9蛋白,一种在鸡支原体感染过程中展现出惊人双重功能的分子。这项来自华中农业大学动物科技学院与兽医学院的最新研究成果,揭示了S1…...

黑神话悟空黑风山攻略

在黑神话悟空中,玩家一开始来到黑风山的地图就会站在前山土地庙。 下面小编将会根据黑风山地图的地标来进行路线攻略推荐, 玩家可以一边查看游戏地图一边了解这些路线的动线是怎样的。 在苍狼林前山捡到药材老山参,跟随金色光线找到附近的土…...

Android 11 FileProvider的使用和限制

概述: 从Android 7开始,将不允许在app之间,使用file uri,即file://的方式,传递一个file,否则会抛出异常:FileUriExposedException ,其解决方案,就是使用FileProvider,用c…...

闭包+面试真题

对闭包的理解 闭包是内层函数使用外层变量 (子级可以访问父级的变量,但是父级不可以访问子级的) 闭包是指有权访问另一个函数作用域中变量的函数,创建闭包的最常见的方式就是在一个函数内创建另一个函数,创建的函数可以访问到当前函数的局部…...

Java企业面试题3

1. break和continue的作用(智*图) break:用于完全退出一个循环(如 for, while)或一个 switch 语句。当在循环体内遇到 break 语句时,程序会立即跳出当前循环体,继续执行循环之后的代码。continue:用于跳过…...

第3章C/C++流程控制

第3章C/C流程控制 循环语句for循环语句【例题3.14】 求123....100。使用for语句实现循环。【例题3.15】 打印出所有“水仙花数”。【例题3.16】 输出一个金字塔图形。 跳转语句break语句【3.20】输入若干个整数,计算已输入整数之和,直到输入负数为止。 c…...

这是一款很棒的AI录音机——Plaud NotePin,但是它注定失败

Plaud NotePin是一款设计精巧的AI录音设备,它以药丸形状的机身和169美元的售价吸引了市场的注意。这款设备的主要卖点在于它的多功能性,能够转录、总结并提取音频中的关键信息。它的录音和转录功能建立在成熟的技术之上,从微型麦克风到语音转…...

self-play RL学习笔记

让AI用随机的路径尝试新的任务,如果效果超预期,那就更新神经网络的权重,使得AI记住多使用这个成功的事件,再开始下一次的尝试。——llya Sutskever 这两天炸裂朋友圈的OpenAI草莓大模型o1和此前代码能力大幅升级的Claude 3.5&…...

【机器学习】OpenCV入门与基础知识

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 OpenCV入门与基础知识简介安装与环境配置WindowsLinuxmacOS 核心数据结构MatSca…...

【数据分析】基于adonis2与pairwise.adonis2的群组差异分析教程

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍加载R包数据下载导入数据数据预处理adonis分析pairwise.adonis2分析总结系统信息介绍 本教程主要用于执行和分析基于距离矩阵的多样性和群落结构分析,特别是通过adonis2和pairwi…...

使用glide 同步获取图片

在 Glide 中,可以使用asBitmap()方法来获取图片的Bitmap对象,进而同步地加载图片。以下是具体示例: String imageUrl "https://example.com/image.jpg"; Bitmap bitmap Glide.with(context).asBitmap().load(imageUrl).apply(ne…...

XXTEA,XTEA与TEA

TEA、XTEA和XXTEA都是分组加密算法,它们在设计、安全性、性能等方面存在显著区别。以下是它们的主要区别: 密钥长度 TEA:使用128位密钥。 XTEA:通常使用128位或256位密钥。 XXTEA:密钥长度更灵活,可以使用任…...

Odoo 19 路线图(新功能)

Odoo 19 路线图(新功能) Odoo 19 路线图是Odoo官方针对下一版本的发布计划,将在自动化、合规性、用户体验、碳排放报告及本地化等领域推出超过16项新功能。本路线图详细阐述了Odoo 19如何在过往版本基础上进一步提升,助力企业优化销售、财务、运营及客户…...

UE 5 和simulink联合仿真,如果先在UE5这一端结束Play,过一段时间以后**Unreal Engine 5** 中会出现显存不足错误

提问 UE5报错如图。解析原因 回答 你遇到的这个错误提示是: “Out of video memory trying to allocate a rendering resource. Make sure your video card has the minimum required memory, try lowering the resolution and/or closing other applications tha…...

Rust 控制流

文章目录 Rust 控制流if 表达式循环实现重复用 loop 重复代码从循环返回值循环标签用于区分多层循环while 条件循环用 for 循环遍历集合 Rust 控制流 在大多数编程语言中,根据条件是否为真来运行某些代码,以及在条件为真时重复运行某些代码,是…...

DDD架构实战 领域层 事件驱动

目录 核心实现: 这种实现方式的优势: 在实际项目中,你可能需要: 事件驱动往往是在一个微服务内部实现的 领域时间是DDD架构中比较常见的概念 在领域层内部的一个模型更改了状态或者发生了一些行为 向外发送一些通知 这些通…...

Vue基础(14)_列表过滤、列表排序

Array.prototype.filter()【ES5】 filter() 方法创建给定数组一部分的浅拷贝,其包含通过所提供函数实现的测试的所有元素。 语法: filter(callbackFn) filter(callbackFn, thisArg) 参数: callbackFn(回调函数):为数组中的每个元…...

聊一聊 .NET在Linux下的IO多路复用select和epoll

一:背景 1. 讲故事 在windows平台上,相信很多人都知道.NET异步机制是借助了Windows自带的 IO完成端口 实现的异步交互,那在 Linux 下.NET 又是怎么玩的呢?主要还是传统的 select,poll,epoll 的IO多路复用…...

React---扩展补充

一些额外的扩展 4.3 高阶组件 高阶组件是参数为组件,返回值为新组件的函数; 高阶组件 本身不是一个组件,而是一个函数;其次,这个函数的参数是一个组件,返回值也是一个组件; import React fr…...