当前位置: 首页 > news >正文

第L6周:机器学习-随机森林(RF)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊

目标
1.什么是随机森林(RF)
随机森林(Random Forest, RF)是一种由 决策树 构成的 集成算法 ,采用的是 Bagging 方法,他在很多情况下都能有不错的表现。其是由很多决策树构成的,不同决策树之间没有关联。当我们进行分类任务时,新的输入样本进入,就让森林中的每一棵决策树分别进行判断和分类,每个决策树会得到一个自己的分类结果,决策树的分类结果中哪一个分类最多,那么随机森林就会把这个结果当做最终的结果。个人理解:就是通过不维度去使用决策树去分类,每个决策树都有自己的分类结果 ,再把所有的结果进行统计,得出分类最多的那个分类就是预测的最终结果 。
2. Bagging方法:Bagging的主要思想如下图所示,首先从数据集中采样出T个数据集,然后基于这T个数据集,每个训练出一个基分类器,再讲这些基分类器进行组合做出预测。Bagging在做预测时,对于分类任务,使用简单的投票法。对于回归任务使用简单平均法。若分类预测时出现两个类票数一样时,则随机选择一个。
image.png
3.目标:从一个天气数据集去推送天气情况,这个天气数据集包含很多维度的数据,比如温度、温度、气压、风速、云量等等;
具体实现
(一)环境
语言环境:Python 3.10
编 译 器: PyCharm
**(二)具体步骤:

  1. 导入库
import pandas as pd  
import numpy as np  
import seaborn as sns  
import matplotlib.pyplot as plt  
from sklearn.preprocessing import LabelEncoder  
from sklearn.model_selection import train_test_split  
from sklearn.ensemble import RandomForestClassifier  
from sklearn.metrics import classification_report
  1. 导入数据
data = pd.read_csv('./weather_classification_data.csv')  
print(data)

image.png
字段解释:
image.png
3. 查看数据信息

# 数据检查和预处理  
print(data.info())

image.png

# 查看分类特征的唯一值  
characteristic = ['Cloud Cover', 'Season', 'Location', 'Weather Type']  
for i in characteristic:  print(f'{i}:')  print(data[i].unique())  # 过滤重复值print('-' * 50)

image.png

# 继续探索  
feature_map = {  'Temperature': '温度',  'Humidity': '湿度百分比',  'Wind Speed': '风速',  'Precipitation (%)': '降水量百分比',  'Atmospheric Pressure': '大气压力',  'UV Index': '紫外线指数',  'Visibility (km)': '能见度'  
}  
plt.figure(figsize=(15, 10))  for i, (col, col_name) in enumerate(feature_map.items(), 1):  plt.subplot(2, 4, i)  sns.boxplot(y=data[col])  plt.title(f'{col_name}的箱线图', fontsize=14)  plt.ylabel('数值', fontsize=12)  plt.grid(axis='y', linestyle='--', alpha=0.7)  plt.tight_layout()  
plt.show()

注意:

  1. 如果出现“KeyError"的错误,请一定保证features_map中的key和数据中的列名一致,否则找不到。
  2. 如果出现如下图plt无法显示中文的情况:
    image.png
    请在代码中加入这两句(加哪里?自己琢磨一下),参考:python:matplotlib绘图无法显示中文或负号,显示为框框 - 范仁义 - 博客园:
plt.rcParams["font.sans-serif"] = ["SimHei"]  
plt.rcParams["font.family"] = "sans-serif"


分析一下:
image.png

# 处理一下异常数据  
print(f"温度超过60度的数据量: {data[data['Temperature'] > 60].shape[0]}, 占比{round(data[data['Temperature']>60].shape[0] / data.shape[0] * 100, 2)}%.")  
print(f"湿度百分比超过100%的数据量:{data[data['Humidity'] > 100].shape[0]},占比{round(data[data['Humidity'] > 100].shape[0] / data.shape[0] * 100,2)}%。")  
print(f"降雨量百分比超过100%的数据量:{data[data['Precipitation (%)'] > 100].shape[0]},占比{round(data[data['Precipitation (%)'] > 100].shape[0] / data.shape[0] * 100,2)}%。")

image.png
异常数据有点高,把这些异常数据清除掉,以免影响整体训练效果:

# 处理一下异常数据,以免影响训练效果  
print("删前的数据shape:", data.shape)  
data = data[(data['Temperature'] <= 60) & (data['Humidity'] <= 100) & (data['Precipitation (%)'] <= 100)]  
print("删后的数据shape:", data.shape)

image.png

  1. 随机森林预测
# 随机森林预测  
new_data = data.copy()  
label_encoders = {}  
categorical_features = ['Cloud Cover', 'Season', 'Location', 'Weather Type']  
for feature in categorical_features:  le = LabelEncoder()  new_data[feature] = le.fit_transform(data[feature])  label_encoders[feature] = le  for feature in categorical_features:  print(f"'{feature}'特征的对应关系: ")  for index, class_ in enumerate(label_encoders[feature].classes_):  print(f" {index}: {class_}")

image.png

# 构建x, y  
x = new_data.drop(['Weather Type'], axis=1)  
y = new_data['Weather Type']  # 划分数据集  
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=15)  # 构建RF模型  
rf_clf = RandomForestClassifier(random_state=15)  
rf_clf.fit(x_train, y_train)  # 使用RF进行预测  
y_pred_rf = rf_clf.predict(x_test)  
class_report_rf = classification_report(y_test, y_pred_rf)  
print(class_report_rf)

image.png
准确率还是很高。

相关文章:

第L6周:机器学习-随机森林(RF)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 目标&#xff1a; 1.什么是随机森林&#xff08;RF&#xff09; 随机森林&#xff08;Random Forest, RF&#xff09;是一种由 决策树 构成的 集成算法 &#…...

【电路笔记】-差分运算放大器

差分运算放大器 文章目录 差分运算放大器1、概述2、差分运算放大器表示2.1 差分模式2.2 减法器模式3、差分放大器示例3.1 相关电阻3.2 惠斯通桥3.3 光/温度检测4、仪表放大器5、总结1、概述 在之前的文章中,我们讨论了反相运算放大器和同相运算放大器,我们考虑了在运算放大器…...

git 命令---想要更改远程仓库

在 Git 中&#xff0c;origin 是默认的远程仓库名称。可以使用以下命令查看当前 Git 仓库的 origin 名称及其对应的 URL&#xff1a; git remote -v这个命令会列出所有配置的远程仓库及其名称&#xff0c;其中 origin 通常是克隆时自动设置的默认远程仓库名称。输出示例&#…...

LeetCode:2848. 与车的相交点 一次遍历,时间复杂度O(n)

2848. 与车的相交点 today 2848. 与车的相交点 题目描述 给你一个下标从 0开始的二维整数数组 nums 表示汽车停放在数轴上的坐标。对于任意下标 i &#xff0c;nums[i] [starti, endi] &#xff0c;其中 s t a r t i start_i starti​ 是第 i 辆车的起点&#xff0c; e n …...

Xcode 16 RC (16A242) 发布下载,正式版下周公布

Xcode 16 RC (16A242) - Apple 平台 IDE IDE for iOS/iPadOS/macOS/watchOS/tvOS/visonOS 请访问原文链接&#xff1a;https://sysin.org/blog/apple-xcode-16/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org Xcode 16 的新功…...

git 更换远程地址的方法

需要将正在开发的代码远程地址改成新的地址&#xff0c;通过查询发现有三个方法可以实现&#xff0c;特此记录。具体方法如下&#xff1a; &#xff08;1&#xff09;通过命令直接修改远程仓库地址 git remote 查看所有远程仓库git remote xxx 查看指定远程仓库地址git remote…...

9. 什么是 Beam Search?深入理解模型生成策略

是不是总感觉很熟悉&#xff1f; 在之前第5&#xff0c;7&#xff0c;8篇文章中&#xff0c;我们都曾经用到过与它相关的参数&#xff0c;而对于早就有着实操经验的同学们&#xff0c;想必见到的更多。这篇文章将从示例到数学原理和代码带你进行理解。 Beam Search 对应的中文翻…...

Spring自定义注解

目录 一、interface 关键字 二、元注解 三、简单实现 四、使用切面执行自定义注解逻辑 1) 首先将刚才的注解修改成放在方法上的&#xff1a; 2) 定义一个切面类&#xff1a; 3&#xff09;将注解放入到接口方法中测试&#xff1a; 五、切点表达式 一、interface 关键字 …...

微信小程序:wx.login或调用uni.login时报错the code is a mock one

微信小程序&#xff0c;调用wx.login或调用uni.login方法&#xff0c;返回the code is a mock one 原因与解决 原因:没有关联真实的 appid&#xff0c;解决办法&#xff1a;绑定真实的微信小程序的appid...

URL的执行流程

基本概念&#xff1a; URL&#xff08;统一资源定位符&#xff0c;Uniform Resource Locator&#xff09;的执行流程是指当你在浏览器中输入一个URL并按下回车键时&#xff0c;从输入URL到最终在浏览器中显示网页的完整过程。 1.解析协议 URL 以协议开头&#xff0c;如 http…...

双指针算法专题(2)

找往期文章包括但不限于本期文章中不懂的知识点&#xff1a; 个人主页&#xff1a;我要学编程(ಥ_ಥ)-CSDN博客 所属专栏&#xff1a; 优选算法专题 想要了解双指针算法的介绍&#xff0c;可以去看下面的博客&#xff1a;双指针算法的介绍 目录 611.有效三角形的个数 LCR 1…...

加密与安全_优雅存储用户密码的最佳实践

文章目录 Pre概述最佳实践避免使用MD5、SHA1等快速哈希算法加盐哈希 &#xff08;不推荐&#xff09;使用BCrypt、Argon2等慢哈希算法 (推荐)BCrypt Code1. 自动生成和嵌入盐2. 哈希结果的格式3. 代价因子 BCrypt特点 防止暴力破解1. 登录失败锁定2. 双因素认证&#xff08;2FA…...

【多线程】深入剖析线程池的应用

&#x1f490;个人主页&#xff1a;初晴~ &#x1f4da;相关专栏&#xff1a;多线程 / javaEE初阶 还记得我们一开始引入线程的概念&#xff0c;就是因为进程太“重”了&#xff0c;频繁创建销毁进程的开销是非常大的。而随着计算机的发展&#xff0c;业务上对性能的要求越来越…...

『功能项目』切换职业面板【48】

我们打开上一篇47技能冷却蒙版的项目&#xff0c; 本章要做的事情是切换职业UI面板的功能 首先双击打开Canvas预制体在左上主角面板信息中新建一个button按钮 重命名&#xff08;父物体是按钮Button&#xff0c;子物体Image即可&#xff09; 创建一个Image 设计一下布局 复制三…...

【EasyExcel】@ColumnWidth(value = 20) EasyExcel设置列宽不生效

经过测试发现&#xff0c;只有XLS&#xff0c;ColumnWidth注解才会生效&#xff0c;选择CSV和XLSX都不会生效 //对应的导出实体类 EasyExcel.write(outputStream, Result.class)//excel文件类型&#xff0c;包括CSV、XLS、XLSX.excelType(ExcelTypeEnum.XLS)...

CPU 和 GPU:为什么GPU更适合深度学习?

目录 什么是 CPU &#xff1f; 什么是 GPU &#xff1f; GPU vs CPU 差异性对比分析 GPU 是如何工作的 &#xff1f; GPU 与 CPU 是如何协同工作的 &#xff1f; GPU vs CPU 类型解析 GPU 应用于深度学习 什么是 CPU &#xff1f; CPU&#xff08;中央处理器&#xff09;…...

【机器学习】:解锁数据背后的智慧宝藏——深度探索与未来展望

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 文章目录 引言一、深入机器学习的内在机制二、最新进展与趋势三、对未来社会的深远影响结语 引言 在上一篇博客中&#xff0c;我们初步探讨了机器学习如何成为解锁数据背后智慧的关键工具。现在&#xff0c;让…...

【Kubernetes】常见面试题汇总(十八)

目录 55.简述 Kubernetes 共享存储的作用&#xff1f; 56.简述 Kubernetes 数据持久化的方式有哪些&#xff1f; 57.简述 Kubernetes PV 和 PVC &#xff1f; 58.简述 Kubernetes PV 生命周期内的阶段&#xff1f; 55.简述 Kubernetes 共享存储的作用&#xff1f; Kubernet…...

无限边界:现代整合安全如何保护云

尽管云计算和远程工作得到广泛采用&#xff0c;零信任网络也稳步推广&#xff0c;但边界远未消失。相反&#xff0c;它已被重新定义。就像数学分形的边界一样&#xff0c;现代网络边界现在无限延伸到任何地方。 不幸的是&#xff0c;传统工具在现代无限边界中效果不佳。现代边…...

HTML贪吃蛇游戏

文章目录 贪吃蛇游戏 运行效果代码 贪吃蛇游戏 贪吃蛇是一款经典的休闲益智游戏。本文将通过HTML5和JavaScript详细解析如何实现一个简易版的贪吃蛇游戏。游戏的主要逻辑包括蛇的移动、碰撞检测、食物生成等功能。以下是游戏的完整代码及注释解析。&#xff08;纯属好玩&#…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

汇编常见指令

汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX&#xff08;不访问内存&#xff09;XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...

从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践

作者&#xff1a;吴岐诗&#xff0c;杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言&#xff1a;融合数据湖与数仓的创新之路 在数字金融时代&#xff0c;数据已成为金融机构的核心竞争力。杭银消费金…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型&#xff08;算法、数据分析、机器学习等&#xff09;不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用

前言&#xff1a;我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM&#xff08;Java Virtual Machine&#xff09;让"一次编写&#xff0c;到处运行"成为可能。这个软件层面的虚拟化让我着迷&#xff0c;但直到后来接触VMware和Doc…...