当前位置: 首页 > news >正文

2019湖南省大学生程序设计竞赛题解(D)

D-Modulo Nine

很妙的类似区间dp, 我自己是想不到,本题解题思路来自学长的博客: 长沙橘子猫

题意

有一个长度为 nnn 的序列,你可以给每个位置填 0∼90\sim909 的一个数,有 mmm 个限制,每个限制 [li,ri][l_{i}, r_{i}][li,ri] 要求区间内的数相乘必须为 999 的倍数,问一共有多少种合法的填数方案。

思路

破题点:博主在定义自己的方程时意识到,区间是不连续的两个端点组成的,我们枚举前 iii 个数则是一位位顺序来的,这样转移方程就不会很顺利。
于是我们可以尝试往将区间也能随着我们顺序遍历来解决的方向虑,于是就引申出解法中,以右端点编号将所有右端点相同的区间的左端点存入同一个桶的做法。 (实际上我们只需要存最大左端点即可)

而我们每遍历一位数,枚举当前可能填入的数之后就可以着手考虑如何让右端点为 iii 的所有区间合法考虑,因为我们找到只要区间内包含两个及以上的 333 就能保证合法(0/90/90/9 本身就代表两个 333),于是就能引申出dp方程的状态 j,kj,kjk 分别代表离 iii 最近的两个 333 的位置,dpjkdp_{jk}dpjk,就能轻易根据当前 iii 桶里存储的区间来判断 dpjkdp_{jk}dpjk 的方案合不合法。

代码

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 60, mod = 1e9 + 7;
int n, m;
ll f[N][N]; //前i个数 当前已经填过的数的最后一个3在j, 倒数第二个在i
vector<int>g[N];void add(ll &x, ll y){x = (x + y + mod) % mod;
}void solve(){for(int i = 0; i <= n; i ++){g[i].clear();for(int j = 0; j <= n; j ++) f[i][j] = 0;}for(int i = 1; i <= m; i ++){int l, r;cin >> l >> r;g[r].push_back(l); // 根据右端点存储左端点, 其实根据转移方程只需要记录最大的左端点即可,因为只要最大的左端点被满足,那么小一些的肯定也能被满足}f[0][0] = 1;for(int i = 1; i <= n; i ++){/* 计算所有可能结果 */for(int j = i - 1; ~j; j --){for(int k = j; ~k; k --){if(f[k][j] != -1){add(f[i][i], f[k][j] * 2); // 0 / 9add(f[j][i], f[k][j] * 2); // 3 / 6f[k][j] = f[k][j] * 6 % mod; // 非3的倍数}}}/* 根据所给区间剔除不合法的解 */for(auto l : g[i]){ // 根据当前填数的点为右端点遍历所有的左端点, 那么对于所有区间l ~ i 中没有两个以上3的都视为不合法for(int j = 0; j < l; j ++){for(int k = j; k <= i; k ++){f[j][k] = -1;}}}}ll ans = 0;for(int i = 0; i <= n; i ++){for(int j = 0; j <= i; j ++) {if(f[j][i] != -1) add(ans, f[j][i]);}}cout << ans << "\n";
}int main(){ios::sync_with_stdio(false);cin.tie(nullptr); cout.tie(nullptr);while(cin >> n >> m){solve();}return 0;
}

相关文章:

2019湖南省大学生程序设计竞赛题解(D)

D-Modulo Nine 很妙的类似区间dp&#xff0c; 我自己是想不到&#xff0c;本题解题思路来自学长的博客&#xff1a; 长沙橘子猫 题意 有一个长度为 nnn 的序列&#xff0c;你可以给每个位置填 0∼90\sim90∼9 的一个数&#xff0c;有 mmm 个限制&#xff0c;每个限制 [li,ri…...

【开发】中间件——RocketMQ

分布式消息系统 RocketMQ概念&#xff0c;用途&#xff0c;特性安装RocketMQ掌握RocketMQ的api使用对producer、consumer进行详解了解RocketMQ的存储特点 简介及相关概念JavaAPISpringBoot整合RocketMQ消息的顺序收发消息系统的事务、存储、重试策略消息系统的集群 RocketMQ R…...

36 UnitTest框架 - 参数化

目录 一、参数化环境准备 1、方式一&#xff1a;在终端&#xff08;cmd&#xff09;安装parameterized 2、方式二&#xff1a;在Pycharm中安装parameterized 二、参数化 1、什么事参数化&#xff1f; 2、参数化引入案例 &#xff08;1&#xff09;需求 &#xff08;2&a…...

Qt源码阅读(四) 事件循环

事件系统 文章为本人理解&#xff0c;如有理解不到位之处&#xff0c;烦请各位指正。 文章目录事件系统什么是事件循环&#xff1f;事件是如何产生的&#xff1f;sendEventpostEvent事件是如何处理的&#xff1f;事件循环是怎么遍历的&#xff1f;事件过滤器event夹带私货时间Q…...

银行数字化转型导师坚鹏:银行数字化领导力提升之道

银行数字化领导力提升之道 ——融合中西智慧&#xff0c;践行知行合一思想&#xff0c;实现知行果合一 课程背景&#xff1a; 很多银行存在以下问题&#xff1a;不知道如何领导数字员工&#xff1f;不清楚银行数字化领导力模型的内涵&#xff1f;不知道如何开展银行数字化…...

Vue2 -- 自定义单选内容的单选框组件

自定义单选内容的单选框组件 之前做的一个项目&#xff0c;在项目中有一个关于人员权限分配的功能&#xff0c;给人员指定各个模块的权限信息&#xff0c;分为 write 可写权限read 可读权限none 没有权限 项目要求画面中只显示 W R 两个按钮控制指定权限信息&#xff0c;都不…...

让PyTorch训练速度更快,你需要掌握这17种方法

掌握这 17 种方法&#xff0c;用最省力的方式&#xff0c;加速你的 Pytorch 深度学习训练。近日&#xff0c;Reddit 上一个帖子热度爆表。主题内容是关于怎样加速 PyTorch 训练。原文作者是来自苏黎世联邦理工学院的计算机科学硕士生 LORENZ KUHN&#xff0c;文章向我们介绍了在…...

LeetCode-309. 最佳买卖股票时机含冷冻期

目录题目思路动态规划题目来源 309. 最佳买卖股票时机含冷冻期 题目思路 每天最多只可能有三种状态中的一种 0表示当前处于买入状态(持有股票) 1表示当前处于卖出状态(不持有股票) 2表示当前处于冷冻状态 设dp[i][j]表示i - 1天状态为j时所拥有的最大现金 dp[i][0] Math.ma…...

AUTOSAR知识点Com(七):CANSM初认知

目录 1、概述 2、CanSM主要做什么 2.1、CAN控制器状态管理 2.2、CAN收发器状态管理 2.3、Busoff检测 1、概述 CANSM&#xff08;Controller Area Network State Manager&#xff09;是AUTOSAR&#xff08;Automotive Open System Architecture&#xff09;标准中的一个模块…...

递归:斐波那契数列、递归实现指数型枚举、递归实现排列型枚举

递归&#xff1a;O(2^n) 调用自己 例题及代码模板&#xff1a; 斐波那契数列 输入一个整数 n &#xff0c;求斐波那契数列的第 n 项。 假定从 0 开始&#xff0c;第 0 项为 0。 数据范围 0≤n≤39 样例 输入整数 n5 返回 5 #include <iostream> #include <cstring&g…...

oracle模糊查询时字段内容包含下划线的解决办法

最近项目中遇到一个关于模糊查询问题。表tabA中的字段name的值有下划线的情况&#xff0c;在模糊查询时发现查询的记录不对。 表的结构 表名&#xff1a;tabA id name sex 1 test_601 1 2 test_602 2 3 test16 1 4 t…...

C++:explicit关键字

C中的explicit关键字只能用于修饰只有一个参数的类构造函数&#xff0c;它的作用是表明该构造函数是显示的&#xff0c;而非隐式的&#xff0c;跟它相对应的另一个关键字是implicit&#xff0c;意思是隐藏的&#xff0c;类构造函数默认情况下即声明为implicit(隐式)。那么显示声…...

【C5】bmc wtd,post

文章目录1.bmc_wtd_cpld&#xff1a;syscpld.c中wd_en和wd_kick节点对应寄存器&#xff0c;crontab&#xff0c;FUNCNAME2.AST芯片WDT切换主备&#xff1a;BMC用WDT2作为主备切换的控制器2.1 AC后读取&#xff1a;bmc处于主primary flash&#xff08;设完后&#xff1a;实际主&…...

200.Spark(七):SparkSQL项目实战

一、启动环境 需要启动mysql,hadoop,hive,spark。并且能让spark连接上hive(上一章有讲) #启动mysql,并登录,密码123456 sudo systemctl start mysqld mysql -uroot -p#启动hive cd /opt/module/ myhadoop.sh start#查看启动情况 jpsall#启动hive cd /opt/module/hive/…...

区块链系统:挖矿原理

在比特币的P2P网络中&#xff0c;有一类节点&#xff0c;它们时刻不停地进行计算&#xff0c;试图把新的交易打包成新的区块并附加到区块链上&#xff0c;这类节点就是矿工。因为每打包一个新的区块&#xff0c;打包该区块的矿工就可以获得一笔比特币作为奖励。所以&#xff0c…...

【博弈】【清华冬令营2018模拟】取石子

写完敢说全网没有这么详细的题解了。 注意&#xff1a;题解长是为了方便理解&#xff0c;所以读起来速度应该很快。 题目描述 有 nnn 堆石子&#xff0c;第 iii 堆有 xix_ixi​ 个。 AliceAliceAlice 和 BobBobBob 轮流去石子&#xff08;先后手未定&#xff09;&#xff0c; …...

嵌入式:BSP的理解

BSP概念总结BSP定义BSP的特点BSP的主要工作BSP在嵌入式系统和Windowsx系统中的不同BSP和PC机主板上的BIOS区别BSP与 HAL关系嵌入式计算机系统主要由 硬件层&#xff0c;中间层&#xff0c;系统软件层和应用软件层四层组成。硬件层&#xff1a;包含CPU&#xff0c;存储器(SDRAM&…...

Linux主机Tcpdump使用-centos实例

1、安装前系统信息 ifconfig查看系统网络接口情况。这里可以看到3个interface&#xff0c;ens160是正常使用的网口&#xff0c;lo是主机的loopback地址127.0.0.1。另外&#xff0c;由于centos安装在虚拟主机上&#xff0c;virbr0是KVM默认创建的一个Bridge,其作用是为连接其上的…...

线性DP——AcWing 898. 数字三角形、AcWing 895. 最长上升子序列

AcWing 898. 数字三角形 1.题目 898. 数字三角形 2.思路 DP问题首先考虑状态转移方程&#xff0c;定义一个集合f ( i , j) &#xff0c;表示从第一个数字&#xff08;1,1&#xff09;走到第 i行&#xff0c;第 j列&#xff08;i , j&#xff09;的所有方案的集合&#xff0c…...

SpringMVC

SpringMVC配置 引入Maven依赖 &#xff08;springmvc&#xff09;web.xml配置DispatcherServlet配置 applicationContext 的 MVC 标记开发Controller控制器 几点注意事项&#xff1a; 在web.xml中 配置<load-on-startup> 0 </load-on-startup> 会自动创建Spring…...

变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析

一、变量声明设计&#xff1a;let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性&#xff0c;这种设计体现了语言的核心哲学。以下是深度解析&#xff1a; 1.1 设计理念剖析 安全优先原则&#xff1a;默认不可变强制开发者明确声明意图 let x 5; …...

【JavaEE】-- HTTP

1. HTTP是什么&#xff1f; HTTP&#xff08;全称为"超文本传输协议"&#xff09;是一种应用非常广泛的应用层协议&#xff0c;HTTP是基于TCP协议的一种应用层协议。 应用层协议&#xff1a;是计算机网络协议栈中最高层的协议&#xff0c;它定义了运行在不同主机上…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

mongodb源码分析session执行handleRequest命令find过程

mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程&#xff0c;并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令&#xff0c;把数据流转换成Message&#xff0c;状态转变流程是&#xff1a;State::Created 》 St…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...