OpenAI o1解决了「Quiet-STaR」的挑战吗?
随着OpenAI o1近期的发布,业界讨论o1关联论文最多之一可能是早前这篇斯坦福大学和Notbad AI Inc的研究人员开发的Quiet-STaR,即让AI学会先安静的“思考”再“说话” ,回想自己一年前对于这一领域的思考和探索,当初也将这篇论文进行了引用,现将部分内容以节选回忆的方式再一次分享给大家:
笔记节选自我半年前那篇「融合RL与LLM思想探寻世界模型以迈向AGI」10万字文章,感兴趣完整的小伙伴儿可以访问我的主页置顶或专栏收录
引用原文:↓
值得注意的是,这篇论文所提出的模型名字非常有意思「Quiet-STaR」,似乎预示着什么..论文中的Quiet-STaR 是以一种通用和可扩展的方式学习推理的语言模型。
与上一篇不同,论文中将更多精力聚焦在推理任务数据上而非E2E模型结构或训练方法上。通过在多样化网络文本中隐含的丰富推理任务的范围上进行训练,而不是狭义地专门为特定数据集进行训练,Quiet-STaR 指引了更健壮和适应性更强的语言模型的方向。论文的结果证明了这种方法的潜力,Quiet-STaR 在提高下游推理性能的同时生成了具有质量意义的理由。论文相信这也开启了许多潜在的未来方向 - 例如,可以尝试对思考进行集成,以进一步提高对未来token的预测。
此外,如果语言模型能够预测何时思考是有用的,例如通过在预测之前放置混合头,那么预测的混合权重可以用于在生成过程中动态分配计算资源。
通常,语言模型可以通过对问答数据集进行采样推理来自行训练其推理能力,即尝试回答问题、在推理导致正确最终答案时对其进行训练,然后重复该过程迭代解决更困难的问题。
然而,从策划的问答数据集进行训练限制了推理的规模和普遍性。问答数据集,尤其是高质量的数据集,需要经过深思熟虑的策划,并且天生只能涵盖一部分推理任务。
从而,论文扩展了STaR - 语言模型不是学习在特定任务(如数学问答)上推理,而是训练语言模型生成推理来帮助它从大型互联网文本语料库推断未来文本。
因此,论文允许语言模型从语言中存在的多样化任务中学习。这建立在当前语言建模范式的一个基本直觉之上,即"语言模型是无监督的多任务学习者"。与STaR一样,论文利用语言模型现有的推理能力来生成理由,并使用基于REINFORCE的奖励对语言模型及其生成的理由进行训练。论文将这种技术称为Quiet-STaR,因为它可以被理解为"悄悄地"应用STaR,训练模型在说话之前思考。
相关文章:

OpenAI o1解决了「Quiet-STaR」的挑战吗?
随着OpenAI o1近期的发布,业界讨论o1关联论文最多之一可能是早前这篇斯坦福大学和Notbad AI Inc的研究人员开发的Quiet-STaR,即让AI学会先安静的“思考”再“说话” ,回想自己一年前对于这一领域的思考和探索,当初也将这篇论文进行…...

PDF产品册营销推广利器FLBOOK
在互联网高速发展的时代,营销推广已成为企业拓展市场的重要手段。而一款优秀的营销工具,可以为企业带来事半功倍的推广效果。今天,就为大家介绍一款集创意与实用于一体的PDF产品册营销推广利器——FLBOOK,帮助企业轻松提升品牌影响…...

华为OD机试 - 字符串划分(Python/JS/C/C++ 2024 E卷 100分)
华为OD机试 2024E卷题库疯狂收录中,刷题点这里 专栏导读 本专栏收录于《华为OD机试真题(Python/JS/C/C)》。 刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,…...

nginx和php-fpm连接超时的相关配置以及Nginx中的try_files以及root、alias的使用
一、nginx和php-fpm连接超时的相关配置 线上的PHP服务器架构大都是nginx proxy->nginx web->php-fpm。在服务器运行正常,服务器之间的连接正常,未被防火墙阻止的情况下,对这种架构排查504报错时需要注意以下几个地方的参数。 1是nginx…...

在MAC中Ollama开放其他电脑访问
ollama安装完毕后默认只能在本地访问,之前我都是安装其他的软件之后可以结合开放其他端口访问,其实是可以新增或修改下电脑的系统配置,就可以打开端口允许除本机IP或localhost访问。 步骤如下: 1、查看端口(默认是&…...

NE555芯片制作的节拍器
NE555芯片的节拍器,以一定的频率发出声音和闪烁灯光,起到节拍指示的作用。...

如何使用 Next.js 进行服务端渲染(Server-Side Rendering, SSR)
文章目录 前言步骤 1: 创建 Next.js 应用步骤 2: 创建页面组件示例页面组件 步骤 3: 自定义 _app.js 文件步骤 4: 自定义 _document.js 文件步骤 5: 运行应用步骤 6: 构建和部署总结 前言 Next.js 本身就支持 SSR 并提供了一系列内置的方法来简化这个过程。下面将详细介绍如何使…...

【machine learning-八-可视化loss funciton】
可视化lossfunction loss funciton可视化损失函数等高图 loss funciton 上一节讲过损失函数,也就是代价函数,它是衡量模型训练好坏的指标,对于线性回归来说,模型、参数、损失函数以及目标如下:、 损失函数的目标当然…...

Android 将EasyPermissions进一步封装,使得动态权限申请更加简明
1.引入依赖: implementation pub.devrel:easypermissions:3.0.0 2.在BaseActivity处理统一的结果回调和请求Code 核心内容: (1)处理Activity本身继承的方法onRequestPermissionsResult (2)实现接口EasyPermissions.PermissionCallbacks来接收请求结果 (3)定义申请权…...

我的AI工具箱Tauri版-VideoReapeat视频解说复述克隆
本教程基于自研的AI工具箱Tauri版进行VideoReapeat视频解说复述克隆。 VideoReapeat视频解说复述克隆 是自研的AI工具箱Tauri版中的一款专用模块,旨在通过AI技术对视频解说内容进行复述和克隆。该工具可自动洗稿并重新生成视频解说,通过简单配置即可对大…...

MySQL5.7.42高可用MHA搭建及故障切换演示
系列文章目录 rpmbuild构建mysql5.7RPM安装包 MySQL基于GTID同步模式搭建主从复制 文章目录 系列文章目录前言一、MHA架构介绍1.MHA的功能2.MHA组成3.MHA故障转移过程4.MHA架构优缺点 二、环境准备1.服务器免密2.基于GTID主从复制搭建3.下载mha组件 三、MHA组件安装1.安装依赖…...

快速搭建最简单的前端项目vue+View UI Plus
1 引言 Vue是一套用于构建Web前端界面的渐进式JavaScript框架。它以其易学易用、性能出色、灵活多变而深受开发者喜爱,并且与其他前端框架(如React和Angular)相比,在国内市场上受到了广泛的认可和使用。点击进入官方…...

倍增练习(1)
A - ST 表 && RMQ 问题 题目思路:st表的板子题用于静态区间求最值,通过倍增的思想,先通过预处理将各个区间的最大值通过转移式求出f[i][j] max(f[i][j - 1], f[i (1 << (j - 1))][j - 1]);然后再进行重叠查询查询,k log2(r - l 1);,max(f[l][k], f[r - (1 &l…...

MATLAB 在数学建模中的深入应用:从基础到高级实践
目录 前言 一、MATLAB基础知识 1.1 MATLAB工作环境简介 1.1.1 命令窗口(Command Window) 1.1.2 工作区(Workspace) 1.1.3 命令历史(Command History) 1.1.4 编辑器(Editor) 1…...

Unity 设计模式 之 【什么是设计模式】/ 【为什么要使用设计模式】/ 【架构和设计模式的区别】
Unity 设计模式 之 【什么是设计模式】/ 【为什么要使用设计模式】/ 【架构和设计模式的区别】 目录 Unity 设计模式 之 【什么是设计模式】/ 【为什么要使用设计模式】/ 【架构和设计模式的区别】 一、简单介绍 二、 Unity 设计模式 1、Unity 开发中使用设计模式的特点 2…...

[数据集][目标检测]智慧交通铁路异物入侵检测数据集VOC+YOLO格式802张7类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):802 标注数量(xml文件个数):802 标注数量(txt文件个数):802 标注类别…...

飞驰云联FTP替代方案:安全高效文件传输的新选择
FTP协议广泛应用各行业的文件传输场景中,由于FTP应用获取门槛低、使用普遍,因此大部分企业都习惯使用FTP进行文件传输。然而面临激增的数据量和网络安全威胁的不断演变,FTP在传输安全性与传输性能上有所欠缺,无法满足企业现在的高…...

Hive内置集合函数-size,map_keys,map_values,sort_array,array_contains
1. Hive内置Collection Functions 以下函数为Hive是提供的内置集合函数: 返回类型函数(签名)函数说明intsize(Map<K.V>)Returns the number of elements in the map type.intsize(Array)Returns the number of elements in the array type.arraymap_keys(Map<K.V>…...

Exchange Online 计划 2 部署方案
目录 前言 一、前期准备 1. 了解 Exchange Online 计划 2 的功能 2. 系统要求 3. 网络要求 4. 账户和许可 二、安装和配置 Exchange Online 计划 2 1. 注册 Microsoft 365 订阅 2. 验证域 3. 用户和许可证分配 4. 迁移现有邮箱 迁移步骤 三、配置 Exchange Online …...

图数据库的力量:深入理解与应用 Neo4j
图数据库的力量:深入理解与应用 Neo4j 文章目录 图数据库的力量:深入理解与应用 Neo4j1、什么是 Neo4j?版本说明 2、Neo4j 的部署和安装Neo4j Web 工具介绍 3、体验 Neo4j加载数据查询数据数据结构 4、Cypher 入门创建数据查询数据关系深度查…...

Deutsch intensiv C1 Schreiben
Deutsch intensiv C1 Schreiben Part A1, Kasten Part A 1, Kasten (1)zeigt (A) (2)gibt Auskunft ber (A)/darber (3)liefert Daten/Informationen ber(A)/darber (4)stellt(A) dar...

大数据新视界 --大数据大厂之DevOps与大数据:加速数据驱动的业务发展
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...

实战OpenCV之图像阈值处理
基础入门 图像阈值处理是一种二值化技术,它基于预设的阈值,可以将图像中的像素分为两大类:一大类是背景,另一大类是前景或目标对象。这个过程涉及将图像中的每个像素值与阈值进行比较,并根据比较结果决定保留原始值还是…...

登录后继续执行方法
场景 点击按钮,检测到未登录,直接跳转到登录页,登录成功后,返回页面继续执行刚才的点击事件 思路 在跳转时用一个队列存储该事件,登录成功后执行队列里的事件 队列 class Queue {constructor() {this.task []}cl…...

JVM-类加载器的双亲委派模型详解
JVM中存在三个默认的类加载器: BootstrapClassLoaderExtClassLoaderAppClassLoader AppClassLoader的父加载器是ExtClassLoader,ExtClassLoader的父加载器是 BootstrapClassLoader。 它们之间的关系是:AppClassLoader->ExtClassLoader-&…...

【计算机基础题目】Linux系统中文件权限 字母权限和数字权限的相互转换
创作日志: 很久之前对这个略有了解,但是现在完全忘记了,看到这类题目一脸懵逼,现在系统复习下。 1、权限的数字表示(3位) 在Linux系统中,文件权限由一个三位的八进制数表示,每一位代…...

VRRP协议原理
目录 VRRP概述 VRRP产生背景 VRRP介绍 VRRP相关概念 VRRP报文 VRRP的三种状态 VRRP工作原理 优先级和抢占 VRRP接口跟踪 VRRP概述 VRRP产生背景 通常同一网段内的所有主机都会配置相同的网关,以访问外部网络 当唯一的网关设备发生故障时,所有主…...

Dockerfile自定义制作镜像,其中10个指令的作用分析
docker容器中 做镜像是重要的技能。 docker commit只能制作比较简单的镜像, 要制作比较完善的镜像, 自定义程度比较高的, 就需要用到dockerfile dockerfile可以回溯历史 动态生成镜像。 FROM是基础镜像 CMD是在容器创建的时候默认的启动命令 …...

Linux6-vi/vim
1.vi与vim vi是Linux操作系统下的标准编辑器,类似Windows下的记事本 vim是vi的升级版,包括vi的所有功能,而且支持shell 2.vi/vim下的三种模式 vi/vim有三种模式:命令模式,插入模式和底行模式 命令模式:…...

2012年408考研真题-数据结构
8.【2012统考真题】求整数n(n≥0)的阶乘的算法如下,其时间复杂度是()。 int fact(int n){ if(n<1) return 1; return n*fact (n-1); } A. O(log2n) B. O(n) C. O(nlog2n) D. O(n^2) 解析: 观察代码,我们不…...