当前位置: 首页 > news >正文

初学51单片机之IO口上下拉电阻相关

本案本来是描述一下I2C总线的,在此之前推荐一下B站一个UP关于时序图的讲解

I2C入门第一节-I2C的基本工作原理_哔哩哔哩_bilibili

       不过在描述I2C前先简单的探讨下51单片机IO口下拉电阻的基本情况,事实上这个问题困扰笔者很长时间了,这次也是一些基础的探索。网上搜索的IO口原理图都是逻辑图,所以有些情况就很尴尬,不知道怎么理解。这次神奇的B站没有拯救我,虽然有些科普视频,但还是无法比较准确的解决问题。

     在前面的博文关于LCD1602液晶的描述时候,笔者的开发板是把液晶E端与单片机P1.5端口相连并且接了一个下拉电阻,它的作用是把P1.5端口电压(即液晶E端电压)拉成低电平。那么它是如何实现的呢?51单片机P1端口是准双向IO口并且是上拉,即它能提供的电流很小最大是200ua,5V电压下换算一下5/0.0002这个电阻是25K,开发板老师说的这个内置上拉电阻是20K左右。

如图准双向IO口的示意图网上能够找到比较常见的示意图:在IO端口P1.x处接一个下拉电阻20K。

笔者以前给出的准双向IO口示意图:

经典解释:VCC下面那个内置上拉电阻R就可以理解为是25K,

T2导通的时候IO口P1.x就输出低电平。

T2截止的时候IO口p1.x就输出高电平。

51单片机在上电结束后默认输出是高电平即T2是截止的,那么在P1.x端口接下拉电阻20K,为什么能把IO口拉成低电平呢?而不是和内置上拉电阻一起分5V的电压?

即该处的电压是5*20K/(25K+20K) = 2.22V. 但最后的结果是0V?为什么?这群大爷在出示意图的时候就不考虑这种情况容易引起误解,我找了不少关于这方面的讯息,都没有关于这方面的解释,这个问题很简单吗?还是只有我一个笨蛋。。。。(后文笔者写着写着就解决了。。。)


然后看一下51规格书提供的关于IO口这方面的说明

尝试解读一下:

1:上图栅极画圆圈表示PMOS管,不画圆圈表示NMOS管。PMOS管低电平导通,NMOS管高电平导通,反之截止。可见上图3个Pmos管(T1,T2,T3)一个Nmos管(T4)

2.一导线穿过去表示这两个场效应管的G极是连接在一起的方便画法。

        PMOS管就是载流子是正电荷或者叫空穴的mos管,这个P英文postive:正向、正极的意思。同样的NMOS这个N是negative负向的、负极的意思。这就比较好记忆了,笔者以前根本就记不住这个东西。别听某些人瞎说只要知道中文就好了。。。。。。笔者后面知道英文后就没怎么忘了,在命名mos管的时候都是以它的沟道的命名的。Pmos管就是P沟道,即它的多数载流子是正电荷或者叫空穴。

       而mos管的中间段的沟道载流子都是栅极电压感应出来的,因此要感应出正电荷,那么栅极和源极之间的电压差即GS<0,对应着上文PMOS管低电平导通,这不是说G极一定是低电平,而是说G极的电压小于S极。

     所以你会在一些电路图上看到PMos管的S极(源极)是高电平,漏极是低电平的,而且两种mos管逻辑图S级与D极的位置在电路图中是刚好相反,不像教科书里哪样S极都在示意图下面,D极在上面。其实这和三级管差不多,对于PNP的三极管它发射极是高电平,集电极是低电平。这里的高低电平都是相对的,不一定是基于地的电平更多的是比较电平。那么PMOS管低电平导通,NMOS管高电平导通就好理解是什么意思了。

笔者标识了一下mos管的管脚

     可以看到T1的是PMOS,下面的T4是NMOS,它们的漏极是相连的,PMOS的源极是接VDD的,NMOS的源极是接地的。

      写入程序使IO口 P2.0 = 0;那么用示波器测试P2.0端口它就会是低电平。走下线路图看下它是怎么工作的,51单片机P2.0是准双向IO口。

      口锁存数据被写入0,经过非门,输出1。继续走有两个分支,往上走,它又会经过一个非门,先不管。看往下走的分支1,直通NMOS管T4以及PMOS管T2的G极,也就是说现在G极是高电平了,则T4导通了,T2是截止的

然后我们继续走另一个分支2,经过两个非门则这时候的电平信号又转回低电平了,经过2个CPU延时,到达或门,或门的另一个引脚已然由分支1保持为高电平,显然分支1电平信息传递比分支2快,则现在或门的输出就是高电平了,T1是PMOS,这时候G端与S端的电平是相等的,那么PMOS管T1截止了。

那么IO端口P2.0就直接通过T4mos管接地了,现在端口电压输出低电平了。此时电流可以从外部装置(高电平)流入单片机,这个电流可以叫“灌”电流,也叫IO口推挽模式中的“挽”,因为路线之间没有限流电阻,所以叫强“挽”,所以外部装置要接限流电阻控制电流,否则会烧坏单片机。

我们观察一下T3mos管,发现它的G极是和IO端口引脚相连的,之间串有一个干扰滤波而且是个非门输出,IO端口低电平电压通过非门输出高电平,高电平加在T3的G极,T3就无法导通。再看一下准双向IO口示意图:

T3导通后这个内置上拉电阻才是20K左右,如果T3不导通,可以认为这个上拉电阻就是20K+T3截止的等效电阻,可以认为高阻抗,说人话就是阻值很大。

如此只有T4mos管工作,最终表现为IO口输出低电平。


        现在用程序往IO口p2.0写入1,则现在口锁存数据为1,分支1经过非门。T4和T2的G极都是低电平,则T4截止T2导通。T2是极弱上拉。只能提供30UA 的电流,

       从数据手册上来看,它是在引脚悬空的时候工作的,用来维持高电平的。用欧姆定理可以看出来,这个等效的上拉电阻是5/0.00003=166 667欧姆近似一下就是166K,在如此的大的上拉电阻情况下还能使端口输出高电平,则说明输出IO端口到地的电阻比它大的多的多,则认为IO端口到地的阻抗是高阻抗。且它是在悬空的时候才工作,说明IO口悬空的时候极弱上拉体供的电平信号无法反馈给T3的G极使它的管子打开。极弱上拉和弱上拉之间无法套娃工作(看后文解释)

   再看下手册对于弱上拉的描述:

     看的不是很明白?不过我们知道准双向IO口在作为输入的时候,它是要先向IO口写入1,这个时候单片机IO口的电压就可以随着外部装置电平的信号变化。

      如果外部装置是高电平,这个时候单片机IO口就是高电平,外部电压是低电平,IO电平就是低电平。程序中会使用语句比如 sbit  k = P2.0; k = 1(先向IO口写入1);  vaule = k(在把IO电压赋值给变量) ;这个时候的vaule的值就不是我们写入单片机的高电平,而是外部装置的电平信息。也就是说当外部装置是高电平的时候vaule = 1;,是弱上拉在工作,一旦外部装置是低电平那么,弱上拉关闭,极弱上拉工作。此时该IO口输出的电平是低电平。即现在vaule = 0;

这最后一句话就不太好理解了。对于外部装置来说,本身是低电平,高电平是IO口,外装置需要的电流不从IO出,难道要外接上拉电阻到VCC给外部装置提供电流,让它能够把端口电压拉低?先不管这句到底什么意思继续下文分析。

     支路2和之前一样,经过两个非门,保持的是高电平,然后到了或门,那么无论或门1脚的电平信息了,或门依然输出高电平,PMOS管T1依然无法打开。怎么不管是高还是低电平写入T1都打不开?这什么情况?从逻辑图看要想T1导通,或门输出必须都要是低电平。再看下逻辑图

从逻辑图上来看这是不可能的实现的,但是我们发现或门的那条支路2上有延时且多经过一个或门消耗更多的时间

         因此当先向IO端口写入0,这时或门的1脚是低电平,再向IO口写入1,那么如上图在时域上当或门2脚是低电平的时候,或门1脚还是保持之前的电平信息即低电平,这个时候或门输出低电平,这时T1就导通了(这个时间很短2个机器周期),同时T4是截止的。这个时候IO端口电压输出高电平,而且因为T1的上拉电阻很小(有没有阻值不知道反正也看不出,看它写了个强,那限流电阻肯定很小),因此是端口能够输出较大的电流给外部装置,这个电流就是“拉”电流,对单片机来说是把电流推出去一样,也叫“推”电流,它和上面的那个工作方式一起叫做推挽工作模式,因为限流电阻小说以叫强推挽输出。

但是持续时间很短2个机器周期,一旦分支2的或门一脚电平被更新为高电平(由于口线寄存器写入1),或门输出高电平,这个强推挽就关闭了,这时根据IO口外部装置的不同,工作在弱上拉或者极弱上拉。看下手册上是怎么说的,

它用了加快,而不是保持,说明这种方式确实是不能长时间保持的,强推结束收后就工作在弱上拉,或者极弱上拉。而且是发生在0到1跳变的时候才有效,强挽是可以长时间保持的。


     我们知道51单片机P0端口是开漏输出,它和准双向IO(P1、P2、P3)的区别是没有内置上拉电阻,这个内置上拉电阻就是弱上拉,它依然是有强推挽和极弱上拉的。51单片机复位默认是工作在高电平的。最后又回到之前的问题单片机IO口接1个下拉电阻,IO口端口会被拉成低电平。

      P0是开漏输出,但是不外接上拉电阻它无法输出高电平,则说明极弱上拉接外部装置时无法维持端口高电平,而强推挽只是一瞬间拉高电平。因此若想IO口长时间输出高电平,那么准双向IO口必然处于弱上拉的状态。

笔者对下拉电阻做过一个测试以下是测试数据:

测试对象开发版51单片机STC89C52 P2.0端口,测试方式是在P2.0端口接一个下拉电阻如图,使其工作在默认状态或者通过程序向P2.0端口写入1,测试端口电压,以下是测试结果:

220K 4.56V

150K 4.56V

100K 4.32V

85K  4.24V

80K 0.96V

47K 0.6V

20K 0.32V

10K  0V

         从数据结果来看,当IO端口接下拉电阻的时候,IO口工作在极弱上拉而不是弱上拉模式,它不满足弱上拉的工作条件(外部提供高电平)因此不能简单的用欧姆定律分压。从结论上来看,极弱上拉的等效电阻很大而且也不是一成不变的,它是随着电流变化(毕竟不是电阻,而是晶体管的集合)。根据具欧姆定律,10K,20K与极弱上拉的等效电阻比起来很小,因此下拉电阻分配到的电压也就很低,IO端口就输出低电平。可以看出随着电阻的变大IO口电压还是有所变大,说明确实大一点的电阻分到了更大一点的电压虽然都是低电平范围内。

      而到了85K的时候,端口突然输出高电平,从现象来看应该是弱上拉打开,(这时极弱上拉是否关闭不清楚它开着也不影响分压结果。它的阻抗相比弱上拉的阻抗来说大很多,更可能的猜想是内置上拉电阻20K,很可能是极弱上拉的阻抗和弱上拉的阻抗并联的等效阻抗,弱上拉的上拉电阻相比于现在的下拉电阻偏小,因此根据欧姆定律分压现在IO端口呈现高电平。

        那为什么会发生这种情况呢?我们观察一下T3管子,发现它的G极是和IO口相连的,而且接了一个非门。那大胆的猜测就是IO的电压达到一个临界值的时候可能是1V(按照数据的合理推测),这个非门就能输出低电平了(上图A点),因此T3mos管打开了。IO口工作在弱上拉状态,通过欧姆定律的分压,IO电压瞬间就变成高电平,而这个IO端口高电平又促使这个非门输出低电平,而这个低电平又让T3管子导通。这是套娃了,如此IO端口现在输出保持在高电平了。表现为85K以上的下拉电阻,不再使IO口处于低电平,而是高电平。

再看一个电路图:

分析一下:

1:工作在默认状态或者向P2.0端口写入1

 2:存在外接上拉电阻10K,因此该高电平信号(VCC)通过非门输出低电平(示意图A点),使T3mos管导通,那么现在的上拉电阻就是内置上拉电阻20K和外接上拉电阻10K并联的阻值:即10K*20K/(10K

+20K) = 6.67K,这个电阻和下拉电阻20K进行分压,则此时的IO口电压是:5*20/(20+6.7)=3.74V

我们用示波器看下结果:

结果是3.76V还是很准确的

3:如果向P2.0端口写入0,IO口端口电压最终是0V,不过这里有个下降时间看逻辑分析仪的输出结果,

可以看到这个高电平持续了187ms,这个时间还是比较长的。

   至此对于51单片机IO口以及上下拉电阻应该有了更深的认识了。对于前面博文LCD1602E端接下拉电阻为什么还能使能液晶应该有了新的认识。强推挽时间能够维持2个机器周期,对11.0592M的单片机来说就是2us,而LCD1602E端的使能要求是ns级别如图

因此即使接了下拉电阻,依然能够正常触发液晶1602.

总结一下:

1:51单片机上电恢复默认电平是高电平

2:   51单片机IO口悬空的时候是靠极弱上拉维持高电平的,它无法激活弱上拉

3:弱上拉需要外部高电平来激活,因为它是靠IO端口反馈信号来打开mos管的。

4:不要想着用默认IO端口高电平作为输出电源,它自身的存在都是靠着外部电平信号,从另一种角度来看信号逻辑,若想保持高电平,外部装置也得保持高电平,因为它们互相依靠,互相依存,互相激活,缺一不可。若想输出电流,就接外置上拉电阻。

5:接下拉电阻的时候,IO口是极弱上拉在工作。下拉电阻不能太大,否则可能套娃最后激活弱上拉。

6:结合上述结论的合理推论是,IO口作为输入端检测到高电平,这不一定证明外部装置处在高电平状态,也可能是高阻抗状态。

7:强推模式只工作两个机器周期,而且是发生在0到1的跳变时刻。强挽模式可以一直持续,一起构成强推挽工作方式。

8:片内IO端口到地的等效电阻变现为高阻抗,因此与下拉电阻并联的阻值就近似为下拉电阻本身。

9:该结论只支持准双向IO口。STM32笔者没学过IO口好像不太一样。

分享一下B站UP的关于IO的解释,笔者这不是要拷打,只是分享一下、

看出区别了吗?上面那个PMOS管Q1的S极和D极接反了,他的Q1是D极接VCC,S极与Q2的D极相连。正确的接法应该是按照我标的那样接。当然这是GPIO是不是有其他玄机笔者不清楚,无论怎么接它Q1的续流二极管肯定是反的,否则它无法放电。

那个续流二极管应该都是朝上的,这个其实不用特别去记忆,根据楞次定律,mos管的寄生电感会在mos管本身位置产生一个感应电动势,让电流保持,而续流二极管的作用就是和它构成回路放电,所以直接按照电流方向画就可以了,然后就知道续流二极管的方向了,如上图。

看mos管的示意图还是有些诀窍的:

1:G,D,S三个管脚。只有D极是孤零零的,因为GS之间构成极板电压因此在示意图上它们是有所表现的如:

2:中间的虚线代表的是绝缘栅型

3:分辩N沟还是P沟看这个小箭头,我们知道N沟P沟说的是它的载流子。

可以靠电场线去记忆,,正电荷箭头是朝外发散,负电荷电场线箭头都是指着负电荷本身的。示意图的虚线就当成电荷本身了

Pmos是p沟,载流子正电荷(空穴)电场方向箭头朝外

Nmos是N沟,载流子电子 电场方向箭头朝内

小结:其实本来这篇是准备描述I2C的,写IO口了是为了MARK一下,以后如果找到结论,再来填。一开始笔者还不知道怎么解释IO口的现象,写着写着竟然找到答案了,也是意外之喜。觉得有问题的同学,可以提出来交流下。

相关文章:

初学51单片机之IO口上下拉电阻相关

本案本来是描述一下I2C总线的&#xff0c;在此之前推荐一下B站一个UP关于时序图的讲解 I2C入门第一节-I2C的基本工作原理_哔哩哔哩_bilibili 不过在描述I2C前先简单的探讨下51单片机IO口下拉电阻的基本情况&#xff0c;事实上这个问题困扰笔者很长时间了&#xff0c;这次也是一…...

Resnet50网络——口腔癌病变识别

一 数据准备 1.导入数据 import matplotlib.pyplot as plt import tensorflow as tf import warnings as w w.filterwarnings(ignore) # 支持中文 plt.rcParams[font.sans-serif] [SimHei] # 用来正常显示中文标签 plt.rcParams[axes.unicode_minus] False # 用来正常显示负…...

Python 中自动打开网页并点击[自动化脚本],Selenium

要在 Python 中自动打开网页并点击第一个 <a> 标签&#xff0c;你需要使用 Selenium&#xff0c;它可以控制浏览器并执行像点击这样的操作。requests 和 BeautifulSoup 只能获取并解析网页内容&#xff0c;但不能进行网页交互操作。 步骤&#xff1a; 安装 Selenium安装…...

Spring Boot-自动配置问题

**### Spring Boot自动配置问题探讨 Spring Boot 是当前 Java 后端开发中非常流行的框架&#xff0c;其核心特性之一便是“自动配置”&#xff08;Auto-Configuration&#xff09;。自动配置大大简化了应用开发过程&#xff0c;开发者不需要编写大量的 XML 配置或是繁琐的 Jav…...

CS61B学习 part1

本人选择了2018spring的课程&#xff0c;因为他免费提供了评分机器&#xff0c;后来得知2021也开放了&#xff0c;决定把其中的Lab尝试一番&#xff0c;听说gitlab就近好评&#xff0c;相当有实力&#xff0c;并借此学习Java的基本知识&#xff0c;请根据pku的cswiki做好评分机…...

我Github的问题解决了!

看的这篇&#xff0c;解决使用git时遇到Failed to connect to github.com port 443 after 21090 ms: Couldn‘t connect to server_git couldnt connect to server-CSDN博客 之前想推送的能推送了&#xff0c;拉取的也能取了。 一、如果是在挂着梯子的情况下拉取或者推送代码…...

Pytorch构建神经网络多元线性回归模型

1.模型线性方程y W ∗ X b from torch import nn import torch#手动设置的W参数&#xff08;待模型学习&#xff09;&#xff0c;这里设置为12个&#xff0c;自己随意设置weight_settorch.tensor([[1.5,2.38,4.22,6.5,7.2,3.21,4.44,6.55,2.48,-1.75,-3.26,4.78]])#手动设置…...

如何基于Flink CDC与OceanBase构建实时数仓,实现简化链路,高效排查

本文作者&#xff1a;阿里云Flink SQL负责人&#xff0c;伍翀&#xff0c;Apache Flink PMC Member & Committer 众多数据领域的专业人士都很熟悉Apache Flink&#xff0c;它作为流式计算引擎&#xff0c;流批一体&#xff0c;其核心在于其强大的分布式流数据处理能力&…...

ActiveMQ、RabbitMQ 和 Kafka 在 Spring Boot 中的实战

在现代的微服务架构和分布式系统中&#xff0c;消息队列 是一种常见的异步通信工具。消息队列允许应用程序之间通过 生产者-消费者模型 进行松耦合、异步交互。在 Spring Boot 中&#xff0c;我们可以通过简单的配置来集成不同的消息队列系统&#xff0c;包括 ActiveMQ、Rabbit…...

火语言RPA流程组件介绍--获取关联元素

&#x1f6a9;【组件功能】&#xff1a;获取指定元素的父元素、子元素、相邻元素等关联信息 配置预览 配置说明 目标元素 支持T或# 默认FLOW输入项 通过自动捕获工具捕获(选择元素工具使用方法)或手动填写网页元素的css,xpath&#xff0c;指定对应网页元素作为操作目标 关联…...

【2024研赛】【华为杯E题】2024 年研究生数学建模比赛思路、代码、论文助攻

思路将在名片下群聊分享 高速公路应急车道紧急启用模型 高速公路拥堵现象的原因众多&#xff0c;除了交通事故外&#xff0c;最典型的就是部分路段出现瓶颈现象&#xff0c;主要原因是车辆汇聚&#xff0c;而拥堵后又容易蔓延。高速公路一些特定的路段容易形成堵点&#xff0…...

Linux——K8s集群部署过程

&#xff11;、环境准备 &#xff08;1&#xff09;配置好网络ip和主机名 control: node1: node2: 配置ip 主机名的过程省略 配置一个简单的基于hosts文件的名称解析 [rootnode1 ~]# vim /etc/hosts // 文件中新增以下三行 192.168.110.10 control 192.168.110.11 node1 1…...

二.Unity中使用虚拟摇杆来控制角色移动

上一篇中我们完成了不借助第三方插件实现手游的虚拟摇杆&#xff0c;现在借助这个虚拟摇杆来实现控制角色的移动。 虚拟摇杆实际上就给角色输出方向&#xff0c;类似于键盘的WSAD&#xff0c;也是一个二维坐标&#xff0c;也就是(-1,1)的范围&#xff0c;将摇杆的方向进行归一化…...

基于SpringBoot的旅游管理系统

系统展示 用户前台界面 管理员后台界面 系统背景 近年来&#xff0c;随着社会经济的快速发展和人民生活水平的显著提高&#xff0c;旅游已成为人们休闲娱乐、增长见识的重要方式。国家积极倡导“全民旅游”&#xff0c;鼓励民众利用节假日外出旅行&#xff0c;探索各地自然与人…...

Linux套接字

目录标题 套接字套接字的基本概念套接字的功能与分类套接字的使用流程套接字的应用场景总结套接字在不同操作系统中的实现差异有哪些&#xff1f;如何优化套接字编程以提高网络通信的效率和安全性&#xff1f;原始套接字&#xff08;SOCK_RAW&#xff09;的具体应用场景和使用示…...

软件测试面试题(5)——二面(游戏测试)

没想到测试题做完等了会儿就安排面试了&#xff0c;还以为自己会直接挂在测试题&#xff0c;这次面试很刺激。测试题总体来说不算太难&#xff0c;主要是实操写Bug那里真没经历过&#xff0c;所以写的很混乱。 我复盘一下这次面试的问题&#xff0c;这次面试是有两个面试官&…...

C#基于SkiaSharp实现印章管理(8)

上一章虽然增加了按路径绘制文本&#xff0c;支持按矩形、圆形、椭圆等路径&#xff0c;但测试时发现通过调整尺寸、偏移量等方式不是很好控制文本的位置。相对而言&#xff0c;使用弧线路径&#xff0c;通过弧线起始角度及弧线角度控制文本位置更简单。同时基于路径绘制文本时…...

信通院发布首个《大模型媒体生产与处理》标准,阿里云智能媒体服务作为业界首家“卓越级”通过

中国信通院近期正式发布《大模型驱动的媒体生产与处理》标准&#xff0c;阿里云智能媒体服务&#xff0c;以“首批首家”通过卓越级评估&#xff0c;并在9大模块50余项测评中表现为“满分”。 当下&#xff0c;AI大模型的快速发展带动了爆发式的海量AI运用&#xff0c;这其中&a…...

AI学习指南深度学习篇-Adam的Python实践

AI学习指南深度学习篇-Adam的Python实践 在深度学习领域&#xff0c;优化算法是影响模型性能的关键因素之一。Adam&#xff08;Adaptive Moment Estimation&#xff09;是一种广泛使用的优化算法&#xff0c;因其在多种问题上均表现优异而被广泛使用。本文将深入探讨Adam优化器…...

08_React redux

React redux 一、理解1、学习文档2、redux 是什么吗3、什么情况下需要使用 redux4、redux 工作流程5、react-redux 模型图 二、redux 的三个核心概念1、action2、reducer3、store 三、redux 的核心 API1、getState()2、dispatch() 四、使用 redux 编写应用1、求和案例\_redux 精…...

2024华为杯研究生数学建模竞赛(研赛)选题建议+初步分析

难度&#xff1a;DE<C<F&#xff0c;开放度&#xff1a;CDE>F。 华为专项的题目&#xff08;A、B题&#xff09;暂不进行选题分析&#xff0c;不太建议大多数同学选择&#xff0c;对自己专业技能有很大自信的可以选择华为专项的题目。后续会直接更新A、B题思路&#…...

001.从0开始实现线性回归(pytorch)

000动手从0实现线性回归 0. 背景介绍 我们构造一个简单的人工训练数据集&#xff0c;它可以使我们能够直观比较学到的参数和真实的模型参数的区别。 设训练数据集样本数为1000&#xff0c;输入个数&#xff08;特征数&#xff09;为2。给定随机生成的批量样本特征 X∈R10002 …...

Relations Prediction for Knowledge Graph Completion using Large Language Models

文章目录 题目摘要简介相关工作方法论实验结论局限性未来工作 题目 使用大型语言模型进行知识图谱补全的关系预测 论文地址&#xff1a;https://arxiv.org/pdf/2405.02738 项目地址&#xff1a; https://github.com/yao8839836/kg-llm 摘要 知识图谱已被广泛用于以结构化格式表…...

2024年中国研究生数学建模竞赛D题思路代码分析——大数据驱动的地理综合问题

地理系统是自然、人文多要素综合作用的复杂巨系统[1-2]&#xff0c;地理学家常用地理综合的方式对地理系统进行主导特征的表达[3]。如以三大阶梯概括中国的地形特征&#xff0c;以秦岭—淮河一线和其它地理区划的方式揭示中国气温、降水、植被、土壤及生态环境在水平和垂直方向…...

全国31省对外开放程度、经济发展水平、政府干预程度指标数据(2000-2022年)

旨在分析2000-2022年间中国31个省份的对外开放程度、经济发展水平和政府干预程度&#xff0c;探讨其背后的动因与影响。 2000年-2022年 全国31省对外开放程度、经济发展水平、政府干预程度指标数据https://download.csdn.net/download/2401_84585615/89478612 数据概览 对外…...

计算机网络传输层---课后综合题

线路&#xff1a;TCP报文下放到物理层传输。 TCP报文段中&#xff0c;“序号”长度为32bit&#xff0c;为了让序列号不会循环&#xff0c;则最多能传输2^32B的数据&#xff0c;则最多能传输&#xff1a;2^32/1500B个报文 结果&#xff1a; 吞吐率一个周期内传输的数据/周期时间…...

【homebrew安装】踩坑爬坑教程

homebrew官网&#xff0c;有安装教程提示&#xff0c;但是在实际安装时&#xff0c;由于待下载的包的尺寸过大&#xff0c;本地git缓存尺寸、超时时间的限制&#xff0c;会报如下错误&#xff1a; error: RPC failed; curl 92 HTTP/2 stream 5 was not closed cleanly&#xf…...

反游戏学(Reludology):概念、历史、现状与展望?(豆包AI版)

李升伟 以下是关于“反游戏学&#xff08;Reludology&#xff09;&#xff1a;概念、历史、现状与展望”的综述&#xff1a; 一、概念 反游戏学&#xff08;Reludology&#xff09;是一个相对较新且不太常见的概念&#xff0c;目前尚未有统一明确的定义。一般来说&#xf…...

【C/C++语言系列】实现单例模式

1.单例模式概念 定义&#xff1a;单例模式是一种常见的设计模式&#xff0c;它可以保证系统中一个类只有一个实例&#xff0c;而且该实例易于外界访问&#xff08;一个类一个对象&#xff0c;共享这个对象&#xff09;。 条件&#xff1a; 只有1个对象易于外界访问共享这个对…...

A. Make All Equal

time limit per test 1 second memory limit per test 256 megabytes You are given a cyclic array a1,a2,…,ana1,a2,…,an. You can perform the following operation on aa at most n−1n−1 times: Let mm be the current size of aa, you can choose any two adjac…...