当前位置: 首页 > news >正文

模拟自然的本质:与IBM量子计算研究的问答

在这里插入图片描述

量子计算可能是计算领域的下一个重大突破,但它的一般概念仍然处于炒作和猜测的现状?它能破解所有已知的加密算法吗?它能设计出治愈所有疾病的新分子吗?它能很好地模拟过去和未来,以至于尼克·奥弗曼能和他死去的儿子说话吗?

以下是记者采访IBM量子公司量子应用和软件高级研究经理Jeannette (Jamie) Garcia博士的对话,并讨论了他们公司的433量子比特量子计算机,以及量子计算在现实生活中的应用。

Ryan Donovan:您是怎么进入量子计算领域的?

Jamie Garcia:我实际上是一名受过培训的化学家——我拥有化学博士学位。我来到IBM是因为我对当时那里正在进行的一些材料科学工作非常感兴趣,并开始在这个领域进行一些研究。我想大多数实验学家都会告诉你,如果你从一个实验中得到一个奇怪的结果,你需要做的第一件事就是找出原因,这涉及到很多理论。所以当你在实验中遇到无法理解的情况时,你会急忙跑过走廊去和你的计算领域的同事交谈,以帮助阐明在你的烧瓶中发生了什么你实际上看不到的事情。

作为这个过程的一部分,我对整个计算和对自然模拟非常感兴趣,并试图用计算来实现这一目标。我意识到使用经典计算机来处理某些反应确实存在一些挑战。我问我的同事,他们告诉我这是不可能的。我就想,为什么?

RD:你能举个例子吗?

JG:对我来说,它们是令人惊讶的例子——小分子的反应性很强。

比如自由基,它会对我们的身体造成各种各样的破坏,但也会出现在电池中,我当时正在研究电池。这种反应能量极高,并且涉及到很多不同的化学变化,以至于传统计算机无法对其进行建模,尽管它们只是像氧气分子那么小的分子。

有一天,我在约克敦海茨沿着走廊行走时,看到一位同事张贴的海报上有化学成分,这引起了我的注意。这种情况在IBM并不常见。原来这位同事正在使用量子计算机研究一种分子的特定性质。

它让我停了下来,我意识到这是一个全新的化学工具。现在我们已经超越了化学领域。我们正在研究各种不同的东西,但从一开始就是这个发现让我着迷并产生了兴趣。

RD:我们已经和量子计算领域的一些人交谈过了,但我认为在这里了解一些基础知识是有价值的。量子比特到底是什么?

JG:量子比特是我们对经典比特的类比。在IBM,我们使用超导量子比特。它们必须被冷却到15毫开尔文左右。你可能看过我们的大型稀释冰箱的照片,这些冰箱可以将量子比特冷却到那个温度水平。它们是由超导材料制成的。

当你对量子比特进行编程时,你所做的就是利用这些超导体的材料特性,你可以将电子移动到不同的能量状态。这基本上可以让你对量子计算机进行编程。其中最大的挑战之一是让它们保持在这些状态。而且感觉我们之后会谈到这个问题。

RD:尤其是考虑到你的材料科学背景。这似乎是关键的一部分。

JG:但它们从根本上来说也是一种不同的 “野兽”,因为我们现在利用量子力学来对量子比特和量子计算机进行编程,并能够在它们上面执行算法。所以它与经典比特相比有不同的特点。

事实上,你可以利用量子力学的特性,比如叠加和纠缠。当你考虑算法时,这些都是需要考虑的因素。在某些情况下,它可以作为经典装置的补充。但这确实是一个值得探索的全新领域。

RD:我听说量子比特并不完全稳定。你将它们进行超低温冷却并试图让它们保持在这种特定的状态。为了产生一个量子位,你需要大量的冗余和纠错吗?

JG:当我们谈论433个量子比特时,它们都在一个芯片上,对吧?所以当你给它们编程时,很多时候,我们利用两个量子比特门,你需要把两个量子比特纠缠在一起。

你把它设置好,并以一种非常特定的方式将你的电路映射到量子位上,以便得到答案。现在,你所说的稳定性部分——量子位本身是敏感的。正因为你所说的,我们必须把我们使用的量子比特冷却到15毫开尔文。

你试着尽可能长时间地保持量子比特在这个状态,这样你就可以运行你需要运行的计算。基本上,您需要有足够的时间为您的电路执行门操作。

量子比特容易受到噪声的影响。有时我们知道噪音来自哪里,有时我们不知道。当我们考虑如何在芯片上排列量子比特时,我们在大多数情况下都是以最小化噪声的方式来做的。我们用的是重六角结构。这限制了量子位之间的串扰,以最大限度地减少噪声,这样你就可以有尽可能长的相干时间来运行电路,并在几小时内进行实际计算,而不是一辈子。

我们还开发了许多其他技术来控制噪音。纠错是我们的团队正在努力的事情,并且正在为特定的纠错方法发展理论,这将包括拥有一个容错设备以及足够低的错误率,以便我们实际上能够运行其中的一些代码。

但我们也在研究误差缓解,它利用经典的后处理方法,并且无论我们是否知道噪声来自何处,都能捕捉到噪声,以便能够考虑到噪声并对其进行纠正,从而使我们能够得到尽可能准确的结果,甚至达到在纠错状态下的准确性。

目前正在进行积极的研究,并且正在开发软件工具,以便我们能够在这些技术开发出来时实时利用它们,并将其用于我们的应用研究,并运行我们感兴趣的算法和电路。

我们最近发布的一项内容,你实际上可以通过 Qisket 运行时访问,叫做概率误差消除。它的本质是当你运行一个电路时,它会运行电路某些部分的逆过程,这样你就能有效地知道噪声在哪里。然后,后处理将其分割成较小的电路,你可以把它们全部重新组合起来,并捕捉到噪声。

当然,机器学习也有。我们非常认真地思考人工智能和量子的交集。特别是我们刚刚宣布了我们的 System Two和计划。我们正在非常仔细地考虑所有这些东西将如何相互作用,人工智能可以在哪些方面帮助量子,量子又可以在哪些方面帮助人工智能。

RD:433个量子比特对经典计算的大致意义是什么?

JG:这是个很难回答的问题。我们从状态的角度来考虑量子位。如果你只是粗略地计算一下,人们通常会说这是2的n次方。所以2的433次方(状态)是个非常大的数字。我认为2的275次方,比宇宙中原子的数量还要多。所以它绝对是巨大的。

但这里面有很多细微差别,尤其是当我们在讨论量子计算机的编程,并使用它来解决化学问题或金融问题或类似的问题时。除此之外,你还必须考虑到系统中存在的噪声。

所以很难说一个拥有 433 个量子比特的设备在当今的计算能力是多少。如果你展望未来,有一天我们的错误率尽可能接近零,那时你才开始谈论这个 2 的 n 次方,并利用宇宙的力量。你知道,所有这些事情。

这就是它在计算方面给我们带来的潜力。

RD: 2的n次方到底是什么?

JG:这是基态数量。

你可以用分子的例子来说明。水可能需要大约 14 个量子比特。如果你有 14 个量子比特,那么就相当于 10 的四次方个经典比特,对吗?

你可以这样计算出来。但是,这里有很多细微差别。我们需要仔细考虑量子计算机擅长解决的问题类型。它不一定是所有你认为经典计算机擅长解决的问题。这是我的提醒,但它能让你有个大致的概念。

RD:一些加密算法正在努力实现量子安全,而另一些算法,如肖尔算法,则特别适合量子计算。为什么会这样呢?

JG:肖尔算法是一种处于长期纠错状态下的算法,对吧?你需要使用纠错来实现它。你听说过的很多著名的算法都显示了量子计算机的指数级速度,通常我们所说的就是处于这种状态下的算法。有一些在化学领域很有名的算法,比如量子相位估计。

也就是说,我们正在做很多工作,使算法更接近近期应用,并进行误差缓解 —— 甚至在早期阶段将误差缓解与纠错相结合 —— 这将使我们能够开始解决一些问题,我认为我们以前不会想到能这么早就解决这些问题。

肖尔算法肯定利用了具有这些辅助量子比特的量子设备。当你大致估算要能够运行肖尔算法或破解 RSA 等加密算法所需的条件时,你会看到需要数百万个量子比特的数字。你必须考虑到纠错带来的开销。

需要注意的是,我们正在比预期更早地做一些事情。我认为这是我们现在谈论量子安全的部分原因。我们不知道具体的时间线是什么,但我们现在确实有方法来解决这个问题。例如,我们的 zSystems 已经是量子安全系统了。现在绝对是开始考虑这个问题的时候了。如果在两年前你问我同样的问题,我会说那还很遥远。

现在我想,嗯。现在就开始计划吧。

RD:量子计算还适合哪些任务或应用?

JG:我们从三个方面来考虑。自然模拟是其中之一。这不仅包括分子模拟,还包括物理学和材料科学。你可以认为这是一个有趣的领域,因为自然模拟是量子力学的。所以,如果你利用的设备也是量子力学的 —— 这里就有一些明显的联系。此外,有理论证明表明,对于某些问题,如动力学、能量状态、基态等性质的问题,量子计算机应该至少有超多项式的加速可能。

第二类通常是数学和处理具有复杂结构的数据。我们谈到了肖尔算法和因数分解。也属于这一类别。已经有针对量子机器学习的算法被展示出来,这意味着在某些情况下可能会有指数级的加速。

我们特别关注这两个领域,因为我们认为它们有很大的潜力,因为它们在使用量子计算机时具有超多项式的潜力。这些是真正值得关注的明显领域。

最后一类是搜索和优化。所以格罗弗算法就属于这一类别。在这些领域,我们还不一定有理论证明存在超多项式加速、大于多项式或指数加速。但我们知道它可能会有大约二次方的加速,也许更多。我们仍在研究和探索,所以你永远不知道会发现什么。

有一些算法,比如振幅估计和放大,我们认为它们可以作为我提到的另外两个领域的加速器。无论以何种方式加快速度,我们都希望它在其他领域也能有所帮助。

您可以想象,映射到这些领域的用例数量几乎是2的n次方,并且它包含了许多不同的东西。我们正在与合作伙伴一起探索许多不同的领域,将其结合起来,并将其与真正有价值且在经典计算中很难的事情相结合。

这是关键,对吧?如果某件事在经典上很简单,你可能会说为什么要看量子计算。而在经典计算中很难的事情,我们认为量子计算可以提供某种优势或加速。从长远来看,这些就是我们正在探索的领域。

RD:说到假设用例,你看过电视节目《开发者》吗?

JG:不,用例是什么?

RD:模拟过去和未来。

JG:哦,天哪。好吧……预测是存在的,对吧?

RD:当然。我是说,模拟自然,对吧?

JG:不,没那么远。

RD:好的。哦,不。

因为你正在帮助人们处理量子任务,他们是否需要对他们的算法或数据进行任何调整,以适合量子计算?

JG:这取决于你想如何使用量子计算机,对吗?我们的许多讨论都围绕着——当我们指向下一代以量子为中心的超级计算中心时,以及在你真正拥有经典高性能计算(HPC)紧挨着量子设备的情况下 —— 你如何最好地在这些之间平衡工作负载?

关于如何理想地解决一个问题,我们一直在思考很多事情。如何以这样一种方式设置问题,使得问题的正确部分在经典计算中得到解决,而其他部分由量子计算机处理。

但是我们所做的算法和运行的电路与经典的算法和电路本质上是不同的。再次强调,这实际上归结为你如何划分问题,以及你想把哪些部分放在哪里。从非常高的层面来说,这是需要考虑的事情。

这里需要指出的是,量子计算机不是大数据类型的设备。这是另一个我们认为从经典角度来看有很多工作要做的领域。但是如果你想查看具有高复杂性、高互连性或者本质上是动态的东西,这些是量子计算机真正擅长处理的事情。

如果你要在量子计算机上运行某些东西,你要确保放入其中的是正确的电路和你正在使用的算法。

RD:还有什么你想说但我们没有说的吗?

JG:总的来说,考虑不同的用例和不同的领域对于一个领域来说是非常重要的,对吧?这是一个多学科的领域,我们需要有来自各种观点的人。无论是软件开发、工程、架构师,甚至是那些更偏向于经典方面的人。

了解量子并引入这个视角确实以一种真正独特的方式推动了我们这个领域的发展。这与它是一个新兴领域的事实有关。这是全员参与的事情,我们都在一起学习。

本文转载自 雪兽软件
更多精彩推荐请访问 雪兽软件官网

相关文章:

模拟自然的本质:与IBM量子计算研究的问答

量子计算可能是计算领域的下一个重大突破,但它的一般概念仍然处于炒作和猜测的现状?它能破解所有已知的加密算法吗?它能设计出治愈所有疾病的新分子吗?它能很好地模拟过去和未来,以至于尼克奥弗曼能和他死去的儿子说话…...

Robot Operating System——带有时间戳和坐标系信息的多边形信息

大纲 应用场景1. 机器人导航场景描述具体应用 2. 环境建模场景描述具体应用 3. 路径规划场景描述具体应用 4. 无人机飞行控制场景描述具体应用 5. 机械臂运动控制场景描述具体应用 6. 自动驾驶车辆控制场景描述具体应用 定义字段解释 案例 geometry_msgs::msg::PolygonStamped …...

内网穿透(当使用支付宝沙箱的时候需要内网穿透进行回调)

内网穿透 一、为什么要使用内网穿透: 内网穿透也称内网映射,简单来说就是让外网可以访问你的内网:把自己的内网(主机)当做服务器,让外网访问 二、安装路由侠 路由侠-局域网变公网 (luyouxia.com) 安装成功如下: 三…...

Contact Form 7最新5.9.8版错误修复方案

最近有多位用户反应Contact Form 7最新5.9.8版的管理页面有错误如下图所示 具体错误文件的路径为wp-content\plugins\contact-form-7\admin\includes\welcome-panel.php on line 153 找到welcome-panel.php这个文件编辑它,将如下图选中的部分删除 删除以后&#xf…...

【第十一章:Sentosa_DSML社区版-机器学习之分类】

目录 11.1 逻辑回归分类 11.2 决策树分类 11.3 梯度提升决策树分类 11.4 XGBoost分类 11.5 随机森林分类 11.6 朴素贝叶斯分类 11.7 支持向量机分类 11.8 多层感知机分类 11.9 LightGBM分类 11.10 因子分解机分类 11.11 AdaBoost分类 11.12 KNN分类 【第十一章&…...

kafka3.8的基本操作

Kafka基础理论与常用命令详解(超详细)_kafka常用命令和解释-CSDN博客 [rootk1 bin]# netstat -tunlp|grep 90 tcp6 0 0 :::9092 :::* LISTEN 14512/java [rootk1 bin]# ./kafka-topics.s…...

如何检测并阻止机器人活动

恶意机器人流量逐年增加,占 2023 年所有互联网流量的近三分之一。恶意机器人会访问敏感数据、实施欺诈、窃取专有信息并降低网站性能。新技术使欺诈者能够更快地发动攻击并造成更大的破坏。机器人的无差别和大规模攻击对所有行业各种规模的企业都构成风险。 但您的…...

《linux系统》基础操作

二、综合应用题(共50分) 随着云计算技术、容器化技术和移动技术的不断发展,Unux服务器已经成为全球市场的主导者,因此具备常用服务器的配置与管理能力很有必要。公司因工作需要,需要建立相应部门的目录,搭建samba服务器和FTP服务器,要求将销售部的资料存放在samba服务器…...

EMT-LTR--学习任务间关系的多目标多任务优化

EMT-LTR–学习任务间关系的多目标多任务优化 title: Learning Task Relationships in Evolutionary Multitasking for Multiobjective Continuous Optimization author: Zefeng Chen, Yuren Zhou, Xiaoyu He, and Jun Zhang. journal: IEE…...

MySQL record 08 part

数据库连接池: Java DataBase Connectivity(Java语言连接数据库) 答: 使用连接池能解决此问题, 连接池,自动分配连接对象,并对闲置的连接进行回收。 常用的数据库连接池: 建立数…...

打造以太坊数据监控利器:InfluxDB与Grafana构建Geth可视化分析平台

前言 以太坊客户端收集大量数据,这些数据可以按时间顺序数据库的形式读取。为了简化监控,这些数据可以输入到数据可视化软件中。在此页面上,将配置 Geth 客户端以将数据推送到 InfluxDB 数据库,并使用 Grafana 来可视化数据。 一…...

对onlyoffice进行定制化开发

基于onlyoffice8.0源码,进行二次开发,可实现包括但不限于以下的功能 1、内容控件的插入 2、内容空间的批量替换 3、插入文本 4、插入图片 5、添加,去除水印 6、修改同时在线人数限制 7、内容域的删除 8、页面UI的定制化 9、新增插件开发 10、…...

使用llama.cpp 在推理MiniCPM-1.2B模型

llama.cpp 是一个开源项目,它允许用户在C中实现与LLaMA(Large Language Model Meta AI)模型的交互。LLaMA模型是由Meta Platforms开发的一种大型语言模型,虽然llama.cpp本身并不包含LLaMA模型的训练代码或模型权重,但它…...

分布式环境中,接口超时重试带来的的幂等问题如何解决?

目录标题 幂等不能解决接口超时吗?幂等的重要性什么是幂等?为什么需要幂等?接口超时了,到底如何处理? 如何设计幂等?幂等设计的基本流程实现幂等的8种方案1.selectinsert主键/唯一索引冲突(常用)2.直接insert 主键…...

设计一个推荐系统:使用协同过滤算法

设计一个推荐系统:使用协同过滤算法 在当今数据驱动的时代,推荐系统已经成为了许多在线平台(如电商、社交媒体和流媒体服务)不可或缺的一部分。推荐系统通过分析用户的行为和偏好,向用户推荐可能感兴趣的内容或产品。本文将详细介绍如何设计一个基于协同过滤算法的推荐系…...

Linux 基本指令(二)

目录 1. more指令 2. less指令(重要) 3. head指令 4. tail指令 5. date指令 (1)可以通过选项来指定格式: ​编辑 (2)在设定时间方面 (3)时间戳 6. cal指令 7. find指令 8. grep指令 9. alias指令 10. zip指令与unzip指令 (1). zip指令 (2). unzip指令…...

Facebook的用户隐私保护:从争议到革新

Facebook早期的数据收集方式引发了隐私担忧。平台的快速增长和用户数据的大规模收集使得隐私问题逐渐显现。尤其是在2018年,剑桥分析事件暴露了数千万用户数据被不当使用的问题。这一事件揭示了Facebook在数据保护方面的严重漏洞,引发了公众对隐私保护的…...

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23

计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23 本期,我们对大语言模型在表情推荐, 软件安全和 自动化软件漏洞检测等方面如何应用,提供几篇最新的参考文章。 1 Semantics Preserving Emoji Recommendation with Large Language Mod…...

C++(学习)2024.9.20

目录 C面向对象的基础知识 this指针 概念 功能 1.类内调用成员 2.区分重名的成员变量和局部变量 3. 链式调用 static关键字 1.静态局部变量 2.静态成员变量 3.静态成员函数 4.单例设计模式 const关键字 1.const修饰成员函数 2.const修饰对象 3.const修饰成员变量…...

让AI激发创作力:OpenAI分享5位专业作家利用ChatGPT写作的案例技巧

大家好,我是木易,一个持续关注AI领域的互联网技术产品经理,国内Top2本科,美国Top10 CS研究生,MBA。我坚信AI是普通人变强的“外挂”,专注于分享AI全维度知识,包括但不限于AI科普,AI工…...

UEFI EDK2框架学习 (一)

01 Shell界面打印 执行qemu指令后 qemu-system-x86_64 -drive ifpflash,formatraw,fileOVMF.fd -nographic -net none出现shell界面 02 在UEFI shell中创建APP 创建SimplestApp文件夹以及SimplestApp.c、SimplestApp.inf cd edk2 mkdir SimplestAppuuidgen // generate …...

基于 BERT 的自定义中文命名实体识别实现

基于 BERT 的自定义中文命名实体识别实现 在自然语言处理中,命名实体识别(Named Entity Recognition,NER)是一项重要的任务,旨在识别文本中的特定实体,如人名、地名、组织机构名等。本文将介绍如何使用 BERT 模型实现自定义中文命名实体识别,并提供详细的代码分析和解读…...

中秋节特别游戏:给玉兔投喂月饼

🖼️ 效果展示 📜 游戏背景 在中秋这个充满诗意的节日里,玉兔因为贪玩被赶下人间。在这个温柔的夜晚,我们希望通过一个小游戏,让玉兔感受到人间的温暖和关怀。🐰🌙 🎮 游戏设计 人…...

python pdf转word或excel

python pdf转word或excel 直接上源码 main import gradio as gr import pdf2docx as p2d import Pdf2Excel as p2e import utils.id.IdUtil as idUtildef convert_pdf_to(pdf_file, pdf_pwd, pdf_to_type):if pdf_to_type "docx":# Convert PDF to DOCXcv p2d.C…...

GNU链接器(LD):位置计数器(.)功能及实例解析

0 参考资料 GNU-LD-v2.30-中文手册.pdf GNU linker.pdf1 前言 一个完整的编译工具链应该包含以下4个部分: (1)编译器 (2)汇编器 (3)链接器 (4)lib库 在GNU工具链中&…...

学习记录:js算法(四十三):翻转二叉树

文章目录 翻转二叉树我的思路网上思路递归栈 总结 翻转二叉树 给你一棵二叉树的根节点 root ,翻转这棵二叉树,并返回其根节点 图一: 图二: 示例 1:(如图一) 输入:root [4,2,7,1…...

关于 SQL 的 JOIN 操作

关于 SQL 的 JOIN 操作 在关系型数据库中,数据通常分布在多个表中。为了进行有效的数据检索,我们需要从不同的表中组合数据,这时就需要使用 JOIN 操作。本文将深入探讨 SQL 中不同类型的 JOIN 及其用法,以帮助你在数据库查询中更…...

聊聊AUTOSAR:基于Vector MICROSAR的TC8测试开发方案

技术背景 车载以太网技术作为汽车智能化和网联化的重要组成部分,正逐步成为现代汽车网络架构的核心,已广泛应用于汽车诊断(如OBD)、ECU软件更新、智能座舱系统、高清摄像头环视泊车系统等多个领域。 在这个过程中,ET…...

ES6中迭代器与生成器知识浅析

ES5及以下版本对JS几种集合,要存取数据一般需要用循环语句来遍历,就要初始化一个或多个变量来记录每一次循环在数据集合中的位置或数据值。这里容易出现超出边界问题,造成程序出错。另外,对于多次循环也需要跟踪理清各个变量关系及…...

unix中的vfork函数

一、前言 本文介绍unix中的vfork函数,vfork函数功能和fork函数类似,也是用于创建新的进程,只不过调用vfork函数创建的子进程将共享父进程的进程空间,且只有当子进程调用exec()或者exit()函数后,父进程才会继续运行。 …...