讯飞星火编排创建智能体学习(二)决策节点
目录
概述
决策节点
文生图节点
连接节点
测试结果
概述
在上一篇博文讯飞星火编排创建智能体学习(一)最简单的智能体构建-CSDN博客,我介绍了编排创作智能体,这篇来介绍一下“决策节点”。
决策节点
在编排创作智能体中,决策节点指的是智能体在其执行过程中需要做出选择或判断的关键点。有了这个节点,智能体的功能就会变得很强大。
在工作区添加一个“决策节点”,然后输入如下提示词。
讯飞星火大语言模型就会根据提示词判断用户的意图。这里我们有两种意图:一种是用户输入了地名,我们就提供给上一篇博文提到的大模型节点,输出相关的旅游信息; 另一种是用户想生成图片,我们就调用讯飞的文生图功能。
文生图节点
在编排时,可以调用讯飞星火强大的AIGC能力,比如文生图、生成ppt或者简历。
连接节点
加入了文生图节点后,我们可以将决策节点的两个输出分别连接到前面介绍的大模型节点和文生图节点。如果用户的输入不是这两种意图,就会从默认输出节点进行大模型的输出。我将大模型节点复制了一份,连接到默认输出上。默认输出不需要接节点,否则会报告错误。
测试结果
如果输入“北京”,则决策节点会判断为“地名”,生成如下信息。
如果输入“北京靓图”,则会判断为“图片”,生成如下信息。
如果输入的是“G55”,则判断为“None”。大模型并不认为它是个高铁的车次,给出的旅行相关的回答有点莫名其妙。
今天分享到这里,下周继续。
相关文章:

讯飞星火编排创建智能体学习(二)决策节点
目录 概述 决策节点 文生图节点 连接节点 测试结果 概述 在上一篇博文讯飞星火编排创建智能体学习(一)最简单的智能体构建-CSDN博客,我介绍了编排创作智能体,这篇来介绍一下“决策节点”。 决策节点 在编排创作智能体中&…...

YOLOv5改进:Unified-loU,用于高品质目标检测的统一loU ,2024年8月最新IoU
💡💡💡现有IoU问题点:IoU (Intersection over Union)作为模型训练的关键,极大地显示了当前预测框与Ground Truth框之间的差异。后续研究者不断在IoU中加入更多的考虑因素,如中心距离、纵横比等。然而,仅仅提炼几何差异是有上限的;而且新的对价指数与借据本身存在潜在…...

力扣 简单 112.路径总和
文章目录 题目介绍题解 题目介绍 题解 class Solution {public boolean hasPathSum(TreeNode root, int targetSum) {// 只在最开始的时候判断树是否为空if (root null) {return false;}targetSum - root.val;if (root.left null && root.right null) { // root 是…...

OpenMV与STM32通信全面指南
目录 引言 一、OpenMV和STM32简介 1.1 OpenMV简介 1.2 STM32简介 二、通信协议概述 三、硬件连接 3.1 硬件准备 3.2 引脚连接 四、软件环境搭建 4.1 OpenMV IDE安装 4.2 STM32开发环境 五、UART通信实现 5.1 OpenMV端编程 5.2 STM32端编程 六、SPI通信实现 6.1 …...

Python库matplotlib之二
Python库matplotlib之二 figureAxessubplot figure matplotlib.pyplot.figure(numNone, figsizeNone, dpiNone, facecolorNone, edgecolorNone, frameonTrue, FigureClass<class ‘matplotlib.figure.Figure’>, clearFalse, **kwargs) num,int 或 str 或 fi…...

DAY17||654.最大二叉树 |617.合并二叉树 |700.二叉搜索树中的搜索 |
654.最大二叉树 题目:654. 最大二叉树 - 力扣(LeetCode) 给定一个不含重复元素的整数数组。一个以此数组构建的最大二叉树定义如下: 二叉树的根是数组中的最大元素。左子树是通过数组中最大值左边部分构造出的最大二叉树。右子树…...

读构建可扩展分布式系统:方法与实践16读后总结与感想兼导读
1. 基本信息 构建可扩展分布式系统:方法与实践 [美]伊恩戈顿(Ian Gorton)著 机械工业出版社,2024年5月出版 1.1. 读薄率 书籍总字数188千字,笔记总字数49688字。 读薄率49688188000≈26.4% 1.2. 读厚方向 设计模式:可复用面向对象软件的…...
Anaconda 安装
目录 - [简介](#简介) - [安装Anaconda](#安装anaconda) - [启动Anaconda Navigator](#启动anaconda-navigator) - [创建环境](#创建环境) - [管理包](#管理包) - [常用命令行操作](#常用命令行操作) - [Jupyter Notebook 快速入门](#jupyter-notebook-快速入门) - [结…...

优雅使用 MapStruct 进行类复制
前言 在项目中,常常会遇到从数据库读取数据后不能直接返回给前端展示的情况,因为还需要对字段进行加工,比如去除时间戳记录、隐藏敏感数据等。传统的处理方式是创建一个新类,然后编写大量的 get/set 方法进行赋值,若字…...
第19周JavaWeb编程实战-MyBatis实现OA系统 1-OA系统
办公OA系统项目开发 课程简介 本课程将通过慕课办公OA平台的开发,讲解实际项目开发中必须掌握的技能和设计技巧。课程分为三个主要阶段: 需求说明及环境准备: 基于RBAC的访问控制模块开发: 多级请假审批流程开发: …...
仿黑神话悟空跑动-脚下波纹特效(键盘wasd控制走动)
vue使用three.js实现仿黑神话悟空跑动-脚下波纹特效 玩家角色的正面始终朝向鼠标方向,且在按下 W 键时,玩家角色会朝着鼠标方向前进 空格建跳跃 <template><div ref"container" class"container" click"onClick"…...
`torch.utils.data`模块
在PyTorch中,torch.utils.data模块提供了许多有用的工具来处理和加载数据。以下是对您提到的DataLoader, Subset, BatchSampler, SubsetRandomSampler, 和 SequentialSampler的详细解释以及使用示例。 1. DataLoader DataLoader是PyTorch中用于加载数据的一个非常…...
深入理解 `strncat()` 函数:安全拼接字符串
目录: 前言一、 strncat() 函数的基本用法二、 示例代码三、 strncat() 与 strcat() 的区别四、 注意事项五、 实际应用场景总结 前言 在C语言中,字符串操作是编程中非常常见的需求。strncat() 函数是标准库中用于字符串拼接的一个重要函数,…...

OpenCV_自定义线性滤波(filter2D)应用详解
OpenCV filter2D将图像与内核进行卷积,将任意线性滤波器应用于图像。支持就地操作。当孔径部分位于图像之外时,该函数根据指定的边界模式插值异常像素值。 卷积核本质上是一个固定大小的系数数组,数组中的某个元素被作为锚点(一般…...

设计模式之装饰模式(Decorator)
前言 这个模式带给我们有关组合跟继承非常多的思考 定义 “单一职责” 模式。动态(组合)的给一个对象增加一些额外的职责。就增加功能而言,Decorator模式比生成子类(继承)更为灵活(消除重复代码 & 减少…...

大数据-146 Apache Kudu 安装运行 Dockerfile 模拟集群 启动测试
点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…...
React入门准备
React是什么 React是一个用于构建用户界面的JavaScript框架,用于构建“可预期的”和“声明式的”Web用户界面,特别适合于构建那些数据会随时间改变的大型应用的用户界面。 它起源于Facebook的内部项目,因为对市场上所有JavaScript MVC框架都…...

robomimic基础教程(四)——开源数据集
robomimic开源了大量数据集及仿真环境,数据集标准格式为HDF5 目录 一、基础要求 二、使用步骤 1. 下载数据集 2. 后处理 3. 训练 4. 查看训练结果 三、HDF5数据集结构与可视化 1. 数据集结构 (1)根级别(data 组 group&a…...

胤娲科技:AI界的超级充电宝——忆阻器如何让LLM告别电量焦虑
当AI遇上“记忆橡皮擦”,电量不再是问题! 嘿,朋友们,你们是否曾经因为手机电量不足而焦虑得像个无头苍蝇?想象一下,如果这种“电量焦虑”也蔓延到了AI界, 特别是那些聪明绝顶但“耗电如喝水”的…...

前端大模型入门:使用Transformers.js手搓纯网页版RAG(二)- qwen1.5-0.5B - 纯前端不调接口
书接上文,本文完了RAG的后半部分,在浏览器运行qwen1.5-0.5B实现了增强搜索全流程。但受限于浏览器和模型性能,仅适合于研究、离线和高隐私场景,但对前端小伙伴来说大模型也不是那么遥不可及了,附带全部代码,…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
React Native在HarmonyOS 5.0阅读类应用开发中的实践
一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强,React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 (1)使用React Native…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
快刀集(1): 一刀斩断视频片头广告
一刀流:用一个简单脚本,秒杀视频片头广告,还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农,平时写代码之余看看电影、补补片,是再正常不过的事。 电影嘛,要沉浸,…...

前端开发者常用网站
Can I use网站:一个查询网页技术兼容性的网站 一个查询网页技术兼容性的网站Can I use:Can I use... Support tables for HTML5, CSS3, etc (查询浏览器对HTML5的支持情况) 权威网站:MDN JavaScript权威网站:JavaScript | MDN...

[拓扑优化] 1.概述
常见的拓扑优化方法有:均匀化法、变密度法、渐进结构优化法、水平集法、移动可变形组件法等。 常见的数值计算方法有:有限元法、有限差分法、边界元法、离散元法、无网格法、扩展有限元法、等几何分析等。 将上述数值计算方法与拓扑优化方法结合&#…...
大数据驱动企业决策智能化的路径与实践
📝个人主页🌹:慌ZHANG-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、引言:数据驱动的企业竞争力重构 在这个瞬息万变的商业时代,“快者胜”的竞争逻辑愈发明显。企业如何在复杂环…...