【JavaEE】——内存可见性问题
阿华代码,不是逆风,就是我疯,你们的点赞收藏是我前进最大的动力!!希望本文内容能够帮助到你!
目录
一:内存可见性问题
1:代码解释
2:结果分析
(1)指令拆解
①load
②访问寄存器
(2)指令分析
3:JVM代码优化
4:解决问题
(1)引入.sleep()
(2)volatile
(3)准确描述
一:内存可见性问题
内存可见性引起的多线程安全问题(一个线程读,一个线程写)
package thread;import java.util.Scanner;/*** Created with IntelliJ IDEA.* Description:* User: Hua YY* Date: 2024-09-23* Time: 10:50*/
public class ThreadDemon26 {public static int flag = 0;public static void main(String[] args) {Thread t1 = new Thread(()->{while(flag == 0){//等待t1线程输入flag的值,只要不为0就能结束t1线程}System.out.println("t1线程结束");});Thread t2 = new Thread(()->{System.out.println("请输入flag的值");Scanner scanner = new Scanner(System.in);flag = scanner.nextInt();});t1.start();t2.start();}
}
1:代码解释
这段代码想要表现出来的效果是,t1,t2线程同时运行,通过t2线程中输入的flag的值来控制t1线程是否结束。
例如:t2线程给flag赋值,输入一个1,那么此时t1线程就不会进入while循环,打印t1线程结束。输入0,那t1线程就陷入死循环
2:结果分析
上文我们先后输入了1,0,2......都没能使t1线程结束,这是为什么呢?
(1)指令拆解
while(flag == 0){};
这条语句其实有两个指令
①load
cpu从内存中读取flag的值(load)到cpu的寄存器上(开销很大)
②访问寄存器
cpu访问寄存器中存储的flag的值,与0进行比较(条件跳转指令)(开销低)
(此处不理解load和为什么开销很大,请看阿华写的前面的文章哈,有详细解释)
(2)指令分析
重点条件:①中load的操作(读内存),相较于②中访问寄存器的操作,开销大的多。
上述while循环中①②这两条指令整体看,执行的速度非常快,等你scanner几秒钟了,我while循环中①②可能都执行几亿次了(cpu的计算能力非常强)
此时JVM就会怀疑,这个①号load 的操作是否还有存在的必要(节省开销),前几次可能还会load一下,后面发现,反正load 的值都一样(速度太快了,等不到我们scanner输入flag的值),索性就把load这个操作给优化掉,只留一个访问寄存器的操作指令,访问之前寄存器中“缓存”的值,大大提高循环的执行速度。
3:JVM代码优化
在我们编译完代码后,JVM会在保持你代码逻辑不变的前提下,对你写过的代码进行智能分析,并进行优化。
这个保持你代码逻辑不变的条件其实很苛刻,单线程还好,但是遇到多线程就难免会遇到一些bug。
我们上述的代码就是t2修改了内存,但是t1并没有看到,这就叫“内存可见性问题”
4:解决问题
(1)引入.sleep()
治标不治本,加入sleep,load的循环次数减少,JVM优化的迫切程度就会降低
(2)volatile
volatile关键字,是强制性关闭优化,保证每次循环都会从内存中读取数据。开销是变大了,但是数据更准了
功能①:保证内存可见性,每次访问变量都要读取内存,而不是优化到寄存器或者缓存器当中
功能②:禁止指令重排序,对于被volatile修饰的变量的操作指令,是不能被重排序的
(3)JMM模型准确描述
我们的描述:在上述代码中,编译器发现,每次循环都要读取读取内存,开销太大,于是就把读取内存操优化为读取寄存器操作。
JMM模型描述:在上述代码中,编译器发现,每次循环都要读取“主内存”,开销太大,于是就把“主内存”中的数据拷贝到“工作内存”中,后续每次读取都是到“工作内存”中。
注:在JMM模型当中,“主内存”对标内存,“工作内存”对标寄存器+缓存哪一套,之所以这么叫是因为方便跨平台使用。
相关文章:

【JavaEE】——内存可见性问题
阿华代码,不是逆风,就是我疯,你们的点赞收藏是我前进最大的动力!!希望本文内容能够帮助到你! 目录 一:内存可见性问题 1:代码解释 2:结果分析 (1…...
YOLO训练参数设置解析
笔者按照教程训练完YOLO后对train训练参数配置产生兴趣,因此下文参考官方文档进行总结 Train - Ultralytics YOLO Docs YOLO 模型的训练设置包括训练过程中使用的各种超参数和配置。 这些设置会影响模型的性能、速度和准确性。 关键的训练设置包括批量大小、学习率…...

基于OpenCV的实时年龄与性别识别(支持CPU和GPU)
关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色…...
理解Js执行上下文
执行上下文 执行上下文(Context)又称上下文,在 JavaScript 中是一个重要的概念,它决定了变量和函数的可访问性及其行为。每个上下文都有一个关联的变量对象(Variable Object),所有在该上下文中定义的变量和…...

微信小程序 蓝牙通讯
客户的需求如下:通过微信小程序控制蓝牙ble设备(电子面膜),通过不同指令控制面膜的亮度和时间。 01.首先看下客户的ble设备服务文档:(本部分需要有点蓝牙基础,在调试过程中可以用安卓软件nRF Connect软件来执行测试命令) 0xFFF1灯控命令 命…...

java后端项目技术记录
后端使用技术记录 一、软件1. apifox,API管理软件问题 2. nginx前端服务器(1) 反向代理(2) 负载均衡 二、问题1. 使用spring全局异常处理器处理特定的异常2. 扩展springmvc的消息转换器(对象和json数据的转换)3. 路径参数的接收4. 实体构建器…...

PostgreSQL数据库与PostGIS在Windows中的部署与运行
本文介绍在Windows电脑中,下载、安装、部署并运行PostgreSQL与PostGIS数据库服务的方法。 PostgreSQL是一种功能强大的开源关系型数据库管理系统(RDBMS),以其稳定性、可靠性和丰富的功能而闻名;其支持多种高级特性&…...

高级算法设计与分析 学习笔记10 平摊分析
动态表,可以变长。 一溢出就另起一个两倍大小的表。 可以轻易证明把n个数字放进去的时间复杂度是O(n),n n/2 n/4……也就2n,插入数字本身也就是n,加起来最多不超过3n. 这种复杂度究竟是怎么算的?毕竟每次插入复杂度…...
从“纸面算力”到“好用算力”,超聚变打通AI+“最后一公里”
如果要评选2024年的年度科技名词,AI当属最热门的候选项。 年初的《政府工作报告》中首次提出了“人工智能”行动,正在从顶层设计着手,加快形成以人工智能为引擎的新质生产力。 折射到市场层面,AI作为一种新的范式,不…...

【有啥问啥】具身智能(Embodied AI):人工智能的新前沿
具身智能(Embodied AI):人工智能的新前沿 引言 在人工智能(AI)的进程中,具身智能(Embodied AI)正逐渐成为研究与应用的焦点。具身智能不仅关注于机器的计算能力,更强调…...

11-pg内核之锁管理器(六)死锁检测
概念 每个事务都在等待集合中的另一事务,由于这个集合是一个有限集合,因此一旦在这个等待的链条上产生了环,就会产生死锁。自旋锁和轻量锁属于系统锁,他们目前没有死锁检测机制,只能靠内核开发人员在开发过程中谨慎的…...
Git 与标签管理
在 Git 中,标签 tag 是指向某个 commit 的指针(所以创建和删除都很快)。Git 有 commit id 了,为什么还要有 tag?commit id 是一串无规律的数字,不好记;而 tag 是我们自定义的,例如我…...
【0334】Postgres内核之 auxiliary process(辅助进程)初始化 MyPgXact
1. MyPgXact(ProcGlobal->allPgXact)间接初始化 在上一篇文章【0333】Postgres内核之 auxiliary process(辅助进程)创建 PGPROC 中, 讲解了Postgres内核完成 AuxiliaryProcess 初始化 pid、lxid、procLatch、myProcLocks、lockGroupMembers等所有成员的过程。 这些成员…...

20.1 分析pull模型在k8s中的应用,对比push模型
本节重点介绍 : push模型和pull模型监控系统对比为什么在k8s中只能用pull模型的k8s中主要组件的暴露地址说明 push模型和pull模型监控系统 对比下两种系统采用的不同采集模型,即push型采集和pull型采集。不同的模型在性能的考虑上是截然不同的。下面表格简单的说…...
Ubuntu 镜像替换为阿里云镜像:简化你的下载体验
Ubuntu,作为一款广受欢迎的Linux发行版,以其稳定性和易用性著称。但你是否曾因为下载速度慢而感到沮丧?现在,你可以通过将Ubuntu的默认下载源替换为阿里云镜像来解决这个问题。本文将指导你如何完成这一过程。 为什么选择阿里云镜…...
The Sandbox 游戏制作教程第 6 章|如何使用装备制作出色的游戏 —— 避免环境危险
欢迎回到我们的系列,我们将记录 The Sandbox Game Maker 的 “On-Equip”(装备)功能的多种用途。 如果你刚加入 The Sandbox,装备功能是 “可收集组件”(Collectable Component)中的一个多功能工具…...
JavaScript中的输出方式
1. console.log() console.log() 是开发者在调试代码时最常用的方法。它将信息打印到浏览器的控制台,使开发者能够查看变量的值、程序的执行状态以及其他有用的信息。 用途:用于调试和记录程序运行时的信息。优点:简单易用,适合…...
力扣9.25
2306. 公司命名 给你一个字符串数组 ideas 表示在公司命名过程中使用的名字列表。公司命名流程如下: 从 ideas 中选择 2 个 不同 名字,称为 ideaA 和 ideaB 。 交换 ideaA 和 ideaB 的首字母。 如果得到的两个新名字 都 不在ideas 中,那么 …...

从零开始之AI面试小程序
从零开始之AI面试小程序 文章目录 从零开始之AI面试小程序前言一、工具列表二、开发部署流程1. VMWare安装2. Centos安装3. Centos环境配置3.1. 更改子网IP3.2. 配置静态IP地址 4. Docker和Docker Compose安装5. Docker镜像加速源配置6. 部署中间件6.1. MySQL部署6.2. Redis部署…...

Html2OpenXml:HTML转化为OpenXml的.Net库,轻松实现Html转为Word。
推荐一个开源库,轻松实现HTML转化为OpenXml。 01 项目简介 Html2OpenXml 是一个开源.Net库,旨在将简单或复杂的HTML内容转换为OpenXml组件。 该项目始于2009年,最初是为了将用户评论转换为Word文档而设计的 随着时间的推移,Ht…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包
文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...
Leetcode33( 搜索旋转排序数组)
题目表述 整数数组 nums 按升序排列,数组中的值 互不相同 。 在传递给函数之前,nums 在预先未知的某个下标 k(0 < k < nums.length)上进行了 旋转,使数组变为 [nums[k], nums[k1], …, nums[n-1], nums[0], nu…...

【UE5 C++】通过文件对话框获取选择文件的路径
目录 效果 步骤 源码 效果 步骤 1. 在“xxx.Build.cs”中添加需要使用的模块 ,这里主要使用“DesktopPlatform”模块 2. 添加后闭UE编辑器,右键点击 .uproject 文件,选择 "Generate Visual Studio project files",重…...
【FTP】ftp文件传输会丢包吗?批量几百个文件传输,有一些文件没有传输完整,如何解决?
FTP(File Transfer Protocol)本身是一个基于 TCP 的协议,理论上不会丢包。但 FTP 文件传输过程中仍可能出现文件不完整、丢失或损坏的情况,主要原因包括: ✅ 一、FTP传输可能“丢包”或文件不完整的原因 原因描述网络…...
【Ftrace 专栏】Ftrace 参考博文
ftrace、perf、bcc、bpftrace、ply、simple_perf的使用Ftrace 基本用法Linux 利用 ftrace 分析内核调用如何利用ftrace精确跟踪特定进程调度信息使用 ftrace 进行追踪延迟Linux-培训笔记-ftracehttps://www.kernel.org/doc/html/v4.18/trace/events.htmlhttps://blog.csdn.net/…...