【Python】Streamlit:为数据科学与机器学习打造的简易应用框架

Streamlit 是一个开源的 Python 库,专为数据科学家和机器学习开发者设计,旨在快速构建数据应用。通过简单的 Python 脚本,开发者无需掌握前端技术,即可将数据分析和模型结果转化为直观、交互式的 Web 应用。其简洁的 API 设计使得开发过程快速且高效,是展示数据分析、构建仪表盘、分享机器学习模型的理想选择。


⭕️宇宙起点
- 🔨 核心特点
- 1. **简易上手,无需前端开发经验**
- 2. **强大的数据可视化功能**
- 3. **交互式控件**
- 4. **快速部署与分享**
- 5. **组件扩展与自定义**
- ♨️ 示例:构建交互式数据仪表盘
- 🧱 适用场景
- 💢 配置和数据展示
- ⚙️ 配置选项表格
- 📥 下载地址
- 💬 结语
- 📒 参考文献
![]()
🔨 核心特点

1. 简易上手,无需前端开发经验
Streamlit 让开发者可以用最少的代码构建功能强大的数据应用。开发者只需关注 Python 代码本身,无需处理 HTML、CSS 或 JavaScript 等前端技术。Streamlit 会自动处理应用的布局、样式和交互,所有这些都基于 Python 原生的写法。例如,你可以用以下简单代码来创建一个包含输入框、按钮和文本展示的应用:
import streamlit as st# 创建应用标题
st.title("欢迎使用 Streamlit 应用")# 创建文本输入框
user_input = st.text_input("请输入您的名字:")# 创建按钮,当点击时显示用户输入内容
if st.button("提交"):st.write(f"你好,{user_input}!")
通过这个极简的代码结构,Streamlit 轻松生成了一个交互式网页,而这在传统的 Web 开发框架中可能需要大量的代码。
2. 强大的数据可视化功能
Streamlit 与常见的数据可视化库(如 Matplotlib、Plotly、Altair 等)无缝集成,支持生成各种复杂的图表。开发者只需几行代码,就可以创建直观的数据可视化并嵌入到应用中。以下代码展示了如何使用 Altair 创建一个交互式的折线图来跟踪人口变化:
import altair as alt
import pandas as pd
import streamlit as st# 载入数据
df = pd.DataFrame({'year': [2010, 2011, 2012, 2013, 2014],'population': [100, 150, 200, 250, 300]
})# 使用 Altair 创建折线图
chart = alt.Chart(df).mark_line().encode(x='year:O',y='population:Q'
)# 展示图表
st.altair_chart(chart, use_container_width=True)
这个例子展示了如何快速加载数据并生成交互式图表。通过 st.altair_chart(),Streamlit 可以将 Altair 生成的图表直接嵌入到应用中。
3. 交互式控件
Streamlit 提供了一系列内置控件,如滑块、选择框、按钮等,用户可以通过这些控件与应用交互。例如,用户可以选择不同的年份来筛选数据并动态更新图表:
# 创建一个滑块选择年份
year = st.slider("选择年份", min_value=2010, max_value=2020, step=1)# 过滤数据并生成动态图表
filtered_df = df[df['year'] == year]
st.line_chart(filtered_df['population'])
这些交互功能极大地提升了用户体验,允许用户根据需求动态探索数据。通过简洁的 API,开发者可以轻松实现与用户的交互,增强应用的实用性和灵活性。
4. 快速部署与分享
构建好 Streamlit 应用后,开发者可以通过 Streamlit Community Cloud 轻松部署,无需配置复杂的服务器。只需将代码上传至 GitHub,并通过简单的点击操作即可将应用发布到云端,生成一个可共享的链接。Streamlit 提供的托管服务让应用的分享和协作变得更加轻松。
以下步骤展示了如何在 Streamlit Cloud 上部署应用:
- 将应用代码推送到 GitHub 仓库。
- 在 Streamlit Cloud 上点击 “New app”,选择代码仓库和主分支。
- 点击发布后,应用会自动生成一个 URL,开发者可以将该链接分享给其他用户。
5. 组件扩展与自定义
Streamlit 还支持通过第三方组件扩展其功能。开发者可以使用现有的 Streamlit 组件,如 streamlit-aggrid 来展示可编辑的数据表,或自行开发新的组件来增强应用的交互性。例如,以下代码展示了如何使用 AgGrid 组件创建一个交互式数据表:
import streamlit as st
from st_aggrid import AgGrid
import pandas as pd# 创建数据框
df = pd.DataFrame({'Name': ['Alice', 'Bob', 'Charlie'],'Age': [25, 30, 35]
})# 使用 AgGrid 展示数据表
AgGrid(df)
Streamlit 的组件系统非常灵活,开发者可以根据需求创建自定义组件,扩展应用的功能。
![]()
♨️ 示例:构建交互式数据仪表盘
以下是一个利用 Streamlit 构建数据仪表盘的完整示例。该应用从 CSV 文件中加载数据,展示多个交互式图表,并允许用户选择不同的年份和维度。
import streamlit as st
import pandas as pd
import altair as alt# 加载数据
@st.cache_data
def load_data():return pd.read_csv('https://path-to-your-csv-file.csv')df = load_data()# 选择年份
year = st.slider("选择年份", min_value=2010, max_value=2020, step=1)
filtered_data = df[df['year'] == year]# 生成柱状图
st.bar_chart(filtered_data[['state', 'population']])# 使用 Altair 生成折线图
line_chart = alt.Chart(filtered_data).mark_line().encode(x='year:O',y='population:Q',color='state:N'
)
st.altair_chart(line_chart)
这个应用展示了如何动态加载数据、生成多种图表并通过滑块进行交互筛选。
![]()
🧱 适用场景
Streamlit 非常适合以下场景:
- 数据分析与可视化:快速创建交互式仪表盘,用于探索和展示数据分析结果。
- 机器学习模型展示:通过 Streamlit 轻松展示模型预测结果,让用户能够通过 Web 应用与模型进行交互。
- 快速原型开发:在项目早期阶段,通过 Streamlit 快速创建原型,帮助团队验证概念和想法。
![]()
💢 配置和数据展示
Streamlit 允许开发者通过简单的表格形式展示数据。你可以通过 st.dataframe 或 st.table 方法来显示数据框。以下是一个示例,展示如何加载并显示 CSV 文件中的数据:
import streamlit as st
import pandas as pd# 加载数据
@st.cache_data
def load_data():return pd.read_csv('https://path-to-your-csv-file.csv')df = load_data()# 展示数据表
st.dataframe(df)
你还可以使用 st.table 来展示静态表格:
st.table(df.head(10)) # 仅显示前10行
![]()
⚙️ 配置选项表格
为了更好地管理和展示 Streamlit 应用中的交互控件和数据处理方式,以下是常见的 Streamlit 控件和功能的配置选项表格:
| 配置项 | 功能说明 | 示例代码 |
|---|---|---|
st.text_input | 允许用户输入文本 | st.text_input("请输入你的名字") |
st.button | 创建一个按钮 | st.button("点击提交") |
st.slider | 创建一个滑块控件 | st.slider("选择一个值", 0, 100) |
st.selectbox | 允许用户从下拉菜单中选择 | st.selectbox("选择年份", [2010, 2020]) |
st.dataframe | 动态展示数据框 | st.dataframe(df) |
st.table | 静态展示数据表 | st.table(df.head()) |
st.bar_chart | 生成柱状图 | st.bar_chart(df[['year', 'population']]) |
st.altair_chart | 使用 Altair 创建交互式图表 | st.altair_chart(chart) |
![]()
📥 下载地址
Streamlit 最新版 下载地址
![]()
💬 结语
无论是构建简单的 Web 应用,还是复杂的交互式数据仪表盘,Streamlit 都提供了简洁高效的解决方案。通过其直观的 API 和强大的功能,开发者可以在短时间内构建出具有专业水准的应用,并与团队或客户轻松分享成果。
![]()
📒 参考文献
- Streamlit 官网
- Streamlit GitHub仓库



相关文章:
【Python】Streamlit:为数据科学与机器学习打造的简易应用框架
Streamlit 是一个开源的 Python 库,专为数据科学家和机器学习开发者设计,旨在快速构建数据应用。通过简单的 Python 脚本,开发者无需掌握前端技术,即可将数据分析和模型结果转化为直观、交互式的 Web 应用。其简洁的 API 设计使得…...
OpenJudge | 置换选择排序
总时间限制: 1000ms 内存限制: 65536kB 描述 给定初始整数顺串,以及大小固定并且初始元素已知的二叉最小堆(为完全二叉树或类似完全二叉树,且父元素键值总小于等于任何一个子结点的键值),要求利用堆实现置换选择排序&a…...
如何提取b站的视频字幕,下载视频
打开视频地址 按F12打开—开发者工具 在开发者工具打开Network 过滤器关键字: 自动生成字幕:ai_subtitle 自制:json 打开/关闭字幕 刷新页面 找到字幕 点选字幕的respond 将方框中的内容复制; 复制到:https://www.drea…...
Vue中使用ECharts实现热力图的详细教程
在数据可视化领域,热力图是一种非常直观的表现形式,它通过颜色深浅来展示数据分布情况。在Vue项目中,我们可以使用ECharts这一强大的图表库来实现热力图。下面我将详细介绍如何在Vue中使用ECharts实现热力图。效果如下图: 一、准备…...
Arduino UNO R3自学笔记13 之 Arduino使用LM35如何测量温度?
注意:学习和写作过程中,部分资料搜集于互联网,如有侵权请联系删除。 前言:学习使用传感器测温。 1.LM35介绍 一般来讲当知道需求,就可以 通过既定要求的条件来筛选需要的器件,多方面的因素最终选定了器件…...
蓝桥杯【物联网】零基础到国奖之路:十六. 扩展模块之矩阵按键
蓝桥杯【物联网】零基础到国奖之路:十六. 扩展模块之矩阵按键 第一节 硬件解读第二节 CubeMX配置第三节 MDK代码 第一节 硬件解读 扩展模块和ADC模块是一摸一样的,插在主板上。 引脚对应关系: PB6-ROW1 PB7-ROW2 PB1-COLUMN1 PB0-COLUMN2 PA8-COLUMN3 …...
Apollo9.0 Planning2.0决策规划算法代码详细解析 (4): PlanningComponent::Proc()
🌟 面向自动驾驶规划算法工程师的专属指南 🌟 欢迎来到《Apollo9.0 Planning2.0决策规划算法代码详细解析》专栏!本专栏专为自动驾驶规划算法工程师量身打造,旨在通过深入剖析Apollo9.0开源自动驾驶软件栈中的Planning2.0模块&am…...
AAA Redis的过期删除策略+缓存雪崩+缓存一致性问题
目录 一、三种删除策略比较 二、缓存雪崩缓存击穿缓存穿透 三、缓存一致性 Redis学习笔记 一、三种删除策略比较 内存占用CPU占用特征定时删除节约内存,无占用不分时段占用CPU资源,频度高时间换空间惰性删除内存占用严重延时执行,CPU利用…...
成都跃享未来教育咨询有限公司抖音小店:引领教育咨询新风尚
在数字化浪潮席卷全球的今天,教育咨询行业正经历着前所未有的变革。成都跃享未来教育咨询有限公司,作为教育行业的一颗璀璨新星,凭借其前瞻性的教育理念与创新的运营模式,在抖音平台上开设了小店,不仅为广大学子及家长…...
【堆排】为何使用向下调整法建堆比向上调整法建堆更好呢?
文章目录 前言一、堆排代码一、计算使用向上调整法建堆的时间复杂度二、计算使用向下调整法插入的时间复杂度总结 前言 在博主的上一篇博客堆排(链接在这里点击即可)的总结中提出啦使用向下调整法建堆比使用向上调整法建堆更好,是因为使用向上调整法建堆的时间复杂…...
在Stable Diffusion WebUI中安装SadTalker插件时几种错误提示的处理方法
SD中的插件一般安装比较简单,但也有一些插件安装会比较难。比如我在安装SadTalker时,就遇到很多问题,一度放弃了,后来查了一些网上攻略,自己也反复查看日志,终于解决,不吐不快。 一、在Stable …...
使用ffmpeg合并视频和音频
使用ffmpeg合并视频和音频 - 哔哩哔哩 简介 FFmpeg是一套可以用来记录、转换数字音频、视频,并能将其转化为流的开源计算机程序。采用LGPL或GPL许可证。它提供了录制、转换以及流化音视频的完整解决方案。它包含了非常先进的音频/视频编解码库libavcodec࿰…...
周末总结(2024/10/05)
工作 人际关系核心实践: 要学会随时回应别人的善意,执行时间控制在5分钟以内 坚持每天早会打招呼 遇到接不住的话题时拉低自己,抬高别人(无阴阳气息) 朋友圈点赞控制在5min以内,职场社交不要放在5min以外 职场的人际关系在面对利…...
在Ubuntu中自动挂载SMB/CIFS共享
文章目录 0. 引言1. 使用credentials文件存储认证信息2. 挂载点的准备3. 必要软件的安装4. 调整挂载参数5. 测试挂载6. 日志调试 0. 引言 本文是自己挂载共享磁盘的实践记录,将详细介绍如何在Linux系统中配置自动挂载SMB/CIFS共享,并提供一些常见问题的…...
pWnOS2.0 靶机渗透( cms 渗透,php+mysql 网站渗透,密码碰撞)
pWnOS2.0 靶机渗透( ) 靶机介绍 vulnhub 靶机 本地搭建 由于靶机特性,靶机网卡位nat模式扫不到,原来需要改 nat 的地址 参考方法 https://blog.csdn.net/Bossfrank/article/details/131415257 作者主页 https://blog.csdn.net/Bossfrank?typeblog P…...
【AI】AIOT简介
随着技术的快速发展,人工智能AI和物联网IoT已经成为当今最热门的技术领域。AIOT是人工智能和物联网的结合,使物联网设备更加智能化,能够进行自主决策和学习的技术。 通过物联网产生、收集来自不同维度的、海量的数据存储于云端、边缘端&#…...
picgo + typora + gitee图床
Picgo打造个人图床,稳定又安全 解决Typora笔记上传到CSDN图片无法显示的问题 typora中...
【路径规划】多机器人路径规划
摘要 多机器人路径规划在现代自动化、仓储管理及智能交通系统中有着广泛的应用。本文提出了一种基于A*算法的多机器人路径规划方法,旨在解决多机器人在同一环境中的路径冲突问题。通过采用启发式搜索和路径优化策略,机器人能够在保持避障的前提下实现最…...
深度学习Day-35:One-hot独热编码
🍨 本文为:[🔗365天深度学习训练营] 中的学习记录博客 🍖 原作者:[K同学啊 | 接辅导、项目定制] 一、 独热编码原理 独热编码(One-Hot Encoding)是一种将分类数据转换为二进制向量的方法&#…...
Streamlit 实现登录注册验证
在开发基于 Streamlit 的应用时,用户认证功能是一个常见需求。本文将介绍如何通过两种方式来实现登录注册功能:手动实现 和 使用 Streamlit-Authenticator 库。手动实现虽然灵活,但需要自行处理密码加密、验证等细节;而 Streamlit…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
大数据零基础学习day1之环境准备和大数据初步理解
学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 (1)设置网关 打开VMware虚拟机,点击编辑…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...
stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
PH热榜 | 2025-06-08
1. Thiings 标语:一套超过1900个免费AI生成的3D图标集合 介绍:Thiings是一个不断扩展的免费AI生成3D图标库,目前已有超过1900个图标。你可以按照主题浏览,生成自己的图标,或者下载整个图标集。所有图标都可以在个人或…...
高分辨率图像合成归一化流扩展
大家读完觉得有帮助记得关注和点赞!!! 1 摘要 我们提出了STARFlow,一种基于归一化流的可扩展生成模型,它在高分辨率图像合成方面取得了强大的性能。STARFlow的主要构建块是Transformer自回归流(TARFlow&am…...
简约商务通用宣传年终总结12套PPT模版分享
IOS风格企业宣传PPT模版,年终工作总结PPT模版,简约精致扁平化商务通用动画PPT模版,素雅商务PPT模版 简约商务通用宣传年终总结12套PPT模版分享:商务通用年终总结类PPT模版https://pan.quark.cn/s/ece1e252d7df...
