Pytorch库中torch.normal()详解
torch.normal()用法
torch.normal()函数,用于生成符合正态分布(高斯分布)的随机数。在 PyTorch 中,这个函数通常用于生成 Tensor。
该函数共有四个方法:
@overload
def normal(mean: Tensor, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: Tensor, std: _float = 1, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: _float, std: Tensor, *, generator: Optional[Generator] = None, out: Optional[Tensor] = None) -> Tensor: ...
@overload
def normal(mean: _float, std: _float, size: Sequence[Union[_int, SymInt]], *, generator: Optional[Generator] = None, out: Optional[Tensor] = None, dtype: Optional[_dtype] = None, layout: Optional[_layout] = None, device: Optional[Optional[DeviceLikeType]] = None, pin_memory: Optional[_bool] = False, requires_grad: Optional[_bool] = False) -> Tensor: ...
参数解析
- mean: 表示正态分布的均值 (μ)。可以是一个标量,也可以是一个张量,如果是张量,其形状必须与 std 相容。如果 mean 是一个张量,那么函数将生成与 mean 相同形状的随机数张量,并以 mean 中的值作为各个维度的均值。
- std: 表示正态分布的标准差 (σ)。可以是一个标量,也可以是一个张量,如果是张量,其形状必须与 mean 相容。如果 std 是一个张量,那么函数将生成与 std 相同形状的随机数张量,并以 std 中的值作为各个维度的标准差。
- “*” (星号):星号后的参数为关键字参数,只能用关键字指定。
- size:指定生成张量的尺寸。
- generator=None:指定一个随机数生成器。PyTorch 常用 torch.Generator() 创建生成器。如果不指定,使用默认生成器。
- out=None:用于指定输出的 Tensor。如果不提供,函数将返回一个新创建的 Tensor。
返回值
返回一个张量,其形状与 mean 和 std 相同,其中的元素服从均值为 mean,标准差为 std 的正态分布。
使用示例
import torchrandom_value = torch.normal(mean=0.0, std=1.0, size=(2, 2))
print(random_value)# 生成一个服从均值0和标准差1的单个随机数
random_value = torch.normal(mean=0, std=1, size=(1,))
print(random_value)# 生成一个服从均值0和标准差1的张量
mean_tensor = torch.zeros(3, 3) # 均值张量
std_tensor = torch.ones(3, 3) # 标准差张量
random_tensor = torch.normal(mean_tensor, std_tensor)
print(random_tensor)# 使用指定生成器生成随机数
generator = torch.Generator().manual_seed(42)
random_value_with_generator = torch.normal(mean=0.0, std=1.0, size=(2, 2), generator=generator)
print(random_value_with_generator)# 输出到指定Tensor
out_tensor = torch.empty(3, 3)
torch.normal(mean_tensor, std_tensor, out=out_tensor)
print(out_tensor)
以上是 torch.normal() 函数的基本用法。可以根据具体需求调整 mean 和 std 的值来生成不同形状、不同均值和标准差的正态分布随机数。
相关文章:
Pytorch库中torch.normal()详解
torch.normal()用法 torch.normal()函数,用于生成符合正态分布(高斯分布)的随机数。在 PyTorch 中,这个函数通常用于生成 Tensor。 该函数共有四个方法: overload def normal(mean: Tensor, std: Tensor, *, generat…...

atcoder-374(a-e)
atcoder-374 文章目录 atcoder-374ABC简洁的写法正解 D正解 E A #include<bits/stdc.h>using namespace std;signed main() {string s;cin>>s;string strs.substr(s.size()-3);if(str "san") puts("Yes");else puts("No");return 0…...

idea2024设置中文
今天下载idea2024.2版本,发现已经装过中文插件,但是还是不显示中文,找了半天原来还需要设置中文选项 方案一 点击文件 -> 关闭项目 点击自定义 -> 选择语言 方案二 点击文件 -> 设置 外观与行为 -> 系统设置 -> 语言和地区…...
跨境电商独立站轮询收款问题
想必做跨境电商独立站的小伙伴,对于PayPal是再熟悉不过了,PayPal是一个跨国际贸易的支付平台,对于做独立站的朋友来说跨境收款绝大部分都是依赖PayPal以及Stripe条纹了。简单来说PayPal跟国内的支付宝有点类似,但是PayPal它是跨国…...
[OS] 3.Insert and Remove Kernel Module
Insert and Remove Kernel Module 1. 切换到 root 账户 $ sudo su作用:Linux 内核模块的加载和卸载需要超级用户权限,因此你必须以 root 用户身份进行操作。sudo su 命令允许你从普通用户切换到 root 账户,从而获得系统的最高权限ÿ…...
updatedb命令:更新locate数据库
一、命令简介 updatedb 命令用于更新 locate 命令使用的文件数据库,以便 locate 命令能够快速定位文件。 二、命令参数 命令格式 updatedb [选项]选项 -l: 仅更新本地文件系统(默认行为)-U: 更新所有文件系统-o D…...
分布式共识算法ZAB
文章目录 概述一、ZAB算法概述二、ZAB算法的核心特性三、ZAB算法的工作流程四、ZAB算法的优势与局限 其他共识算法 概述 分布式共识算法ZAB,全称Zookeeper Atomic Broadcast(Zookeeper原子广播),是Zookeeper保证数据一致性的核心…...
程序化交易与非程序化交易者盈利能力孰优孰劣
炒股自动化:申请官方API接口,散户也可以 python炒股自动化(0),申请券商API接口 python炒股自动化(1),量化交易接口区别 Python炒股自动化(2):获取…...

【JavaEE】【多线程】进程与线程的概念
目录 进程系统管理进程系统操作进程进程控制块PCB关键属性cpu对进程的操作进程调度 线程线程与进程线程资源分配线程调度 线程与进程区别线程简单操作代码创建线程查看线程 进程 进程是操作系统对一个正在运行的程序的一种抽象,可以把进程看做程序的一次运行过程&a…...
LeetCode hot100---贪心算法专题(C++语言)
贪心算法 当前取最优,最终完成全局最优1、买卖股票的最佳时机 (1)题目描述以及输入输出 (1)题目描述: 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。(2)输入输出描述: 输入&…...

《PyTorch深度学习快速入门教程》学习笔记(第15周)
目录 摘要 Abstract 1. 安装Anaconda 2. 查看显卡驱动 3. 安装Pytorch 4. Pytorch加载数据 5. 常用数据集两种形式 6. 路径直接加载数据 7. Dataset加载数据 摘要 本周报的目的在于汇报《PyTorch深度学习快速入门教程》课程第一周的学习成果,主要聚焦于py…...
kubeadm部署k8s1.28.0主从集群(cri-dockerd)
1. kubernetes集群规划 主机IP主机名主机配置角色192.168.100.3master12C/4G管理节点192.168.100.4node12C/4G工作节点192.168.100.5node22C/4G工作节点 2. 集群前期环境准备 (1)初始化脚本 #!/bin/bash echo "——>>> 关闭防火墙与SE…...

C语言复习概要(四)
本文 1. 操作符的分类算术操作符关系操作符逻辑操作符 2. 二进制制和进制转换二进制与十六进制的表示进制转换算法 3. 原码、反码和补码原码反码补码 1. 操作符的分类 C语言中的操作符种类繁多,常用的主要操作符可以按照其功能进行如下分类: 算术操作符…...
【楚怡杯】职业院校技能大赛 “Python程序开发”数据清洗练习
题目: 将书名为‘一级建造师 2020教材 2020版一级建造师 建筑工程管理与实务’的作者(空值)改为 全国一级建造师执业资格考试用书编写委员会,‘出版日期’改为‘2020-05-01’将书名为‘中国共产党简史(32开࿰…...

重学SpringBoot3-集成Redis(五)之布隆过滤器
更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ 重学SpringBoot3-集成Redis(五)之布隆过滤器 1. 什么是布隆过滤器?基本概念适用场景 2. 使用 Redis 实现布隆过滤器项目依赖Redis 配置…...

BGP路由原理详解
🐣个人主页 可惜已不在 🐤这篇在这个专栏 华为_可惜已不在的博客-CSDN博客 🐥有用的话就留下一个三连吧😼 目录 一. BGP简介: 二. BGP报文中的角色 BGP的报文 BGP处理过程 BGP有限状态机 BGP属性 三. BGP作用 四. BGP选路 …...

Pytorch实现心跳信号分类识别(支持LSTM,GRU,TCN模型)
Pytorch实现心跳信号分类识别(支持LSTM,GRU,TCN模型) 目录 Pytorch实现心跳信号分类识别(支持LSTM,GRU,TCN模型) 1. 项目说明 2. 数据说明 (1)心跳信号分类预测数据集 3. 模型训练 (1)项目安装 &am…...

AI股市预测的可参考价值有几何?
1. AI技术在股市预测中的应用 首先,AI技术在股市预测中的应用主要包括机器学习、深度学习、自然语言处理(NLP)和量化金融模型等。机器学习算法能够处理和分析大量的金融数据,从中寻找模式和规律。而深度学习特别是在处理复杂的非线…...
【大数据应用开发】2023年全国职业院校技能大赛赛题第02套
需要技能竞赛软件测试资料的同学们可s聊我,详细了解 目录 任务A:大数据平台搭建(容器环境)(15分) 任务B:离线数据处理(25分 任务C:数据挖掘(10分…...

2. 将GitHub上的开源项目导入(clone)到(Linux)服务器上——深度学习·科研实践·从0到1
目录 1. 在github上搜项目 (以OpenOcc为例) 2. 转移到码云Gitee上 3. 进入Linux服务器终端 (jupyter lab) 4. 常用Linux命令 5. 进入对应文件夹中导入项目(代码) 注意:系统盘和数据盘 1. 在github上搜项目 (以OpenOcc为例) 把链接复制下…...

VB.net复制Ntag213卡写入UID
本示例使用的发卡器:https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

Docker 运行 Kafka 带 SASL 认证教程
Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明:server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
docker 部署发现spring.profiles.active 问题
报错: org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
C++.OpenGL (20/64)混合(Blending)
混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...
Go语言多线程问题
打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...
GitHub 趋势日报 (2025年06月06日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...