当前位置: 首页 > news >正文

如何使用ipopt进行非线性约束求目标函数最小值(NLP非线性规划)内点法(inner point method)

非线性规划,一般用matlab调用cplex和gurobi了,但这两个一般用于线性规划和二次规划

线性规划LP,二次规划(quadratic programming),如果要求更一般的非线性规划IPOT是个很好的选择,求解器很多,根据情况自己选择

非线性

具体的,这篇文章介绍的很清楚了https://blog.csdn.net/mpt0816/article/details/127638557

我这里就是再选择一个问题进行求解

ipopt的可执行程序下载下来, Releases · coin-or/Ipopt · GitHub

建立一个vs2022的工程,把include加到目录里面,把lib库都加进去,同样dll也准备好

 

就这一个主文件放入工程

编译运行即可

四个自变量,两个约束

 eval_f: 计算目标函数值,即需要最小化的目标。

 eval_grad_f: 计算目标函数的梯度。分别是4个偏导数

 eval_g: 计算约束条件的值。 n 是变量个数,m是约束条件个数,g是具体的约束函数

 eval_jac_g: 计算约束条件的雅可比矩阵(两个约束条件的一阶偏导数)

 eval_h: 计算目标函数和约束条件的二阶导数(即Hessian矩阵,二阶偏导数)。

现在使用matlab符号函数把 涉及到 用的 梯度、黑森矩阵都求一下

%clear all
close all
clc% 使用符号函数进行 求解梯度,黑森矩阵syms f g1 g2
syms x1 x2 x3 x4% 定义目标函数
f = x1 * x4 * (x1 + x2 + x3) + x3;% 定义约束函数
g1 = x1 * x2 * x3 * x4;
g2 = x1^2 + x2^2 + x3^2 + x4^2;% 计算目标函数的梯度和 Hessian
grad_f = gradient(f, [x1, x2, x3, x4]);
hess_f = hessian(f, [x1, x2, x3, x4]);% 计算约束函数 g1 的梯度和 Hessian
grad_g1 = gradient(g1, [x1, x2, x3, x4]);
hess_g1 = hessian(g1, [x1, x2, x3, x4]);% 计算约束函数 g2 的梯度和 Hessian
grad_g2 = gradient(g2, [x1, x2, x3, x4]);
hess_g2 = hessian(g2, [x1, x2, x3, x4]);

得到如下结果:

目标函数 f 的梯度:
 x1*x4 + x4*(x1 + x2 + x3)
                     x1*x4
                 x1*x4 + 1
         x1*(x1 + x2 + x3)
 
目标函数 f 的 Hessian:
[           2*x4, x4, x4, 2*x1 + x2 + x3]
[             x4,  0,  0,             x1]
[             x4,  0,  0,             x1]
[ 2*x1 + x2 + x3, x1, x1,              0]
 
约束函数 g1 的梯度:
 x2*x3*x4
 x1*x3*x4
 x1*x2*x4
 x1*x2*x3

 约束函数 g2 的梯度:
 2*x1
 2*x2
 2*x3
 2*x4 

从g1 g2看出来

   nele_jac = 8; 8个非零,两个约束条件,4个变量
   nele_hess = 10;  4*5/2=10,看其中一个hess矩阵的上三角阵


约束函数 g1 的 Hessian:
[     0, x3*x4, x2*x4, x2*x3]
[ x3*x4,     0, x1*x4, x1*x3]
[ x2*x4, x1*x4,     0, x1*x2]
[ x2*x3, x1*x3, x1*x2,     0]
 

约束函数 g2 的 Hessian:
[ 2, 0, 0, 0]
[ 0, 2, 0, 0]
[ 0, 0, 2, 0]
[ 0, 0, 0, 2]
 要替换的部分

1、eval_f 中 目标函数

2、eval_grad_f 中的梯度

   grad_f[0] = x[0] * x[3] + x[3] * (x[0] + x[1] + x[2]);
   grad_f[1] = x[0] * x[3];
   grad_f[2] = x[0] * x[3] + 1;
   grad_f[3] = x[0] * (x[0] + x[1] + x[2]);

3、eval_g 约束条件
   g[0] = x[0] * x[1] * x[2] * x[3] + my_data->g_offset[0];
   g[1] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3] + my_data->g_offset[1];

4、eval_jac_g 约束函数的jacobi矩阵

if中 (8个),位置是

00  01 02 03

10 11 12 13,

else 中

g1梯度,g2梯度

5、eval_h 黑森矩阵

固定抄写,4是变量个数

目标的黑森矩阵,注意走位,注意骚走位,注意下三角阵骚走位

约束的黑森

6、主函数

初始值和 上下限

约束条件的jacobi矩阵和hess矩阵的非零元素

8个=2*自变量个数

10个=自变量个数*(自变量个数+1)/2

初始值

matlab符号函求解出来的各种算式写成c有点麻烦,我这边搞了一个函数可以很方便转c

function f_str = changetoc(f)syms x1 x2 x3 x4 %替换c语言风格
syms R %为了 R^2也能转% f = x1^2 + x2^2 + x3^2 + x4^2;  % 示例符号函数
% f = x1^2 + x2^2 + (x1 + x2)^2 + x3^2 + x4^2;  % 示例符号函数,包含复杂表达式
% f = (r*sin(theta)*(3*cos(x1) - 4) + (x2*cos(theta)*(2*cos(x1) - 2))/n1 + (x2*sin(theta)*sin(x1))/n1)^2% 将符号函数转换为字符串
f_str = char(f);% 替换变量为 C 风格的数组索引 x[0], x[1], x[2], x[3]
f_str = regexprep(f_str, 'x1', 'x[0]');
f_str = regexprep(f_str, 'x2', 'x[1]');
f_str = regexprep(f_str, 'x3', 'x[2]');
f_str = regexprep(f_str, 'x4', 'x[3]');% 定义一个集合(Cell数组)用于保存普通变量名
variables = {'x[0]','x[1]','x[2]','x[3]', 'R'};% 
% % 示例复杂表达式
% f = (r*sin(theta)*(3*cos(x1) - 4) + (x2*cos(theta)*(2*cos(x1) - 2))/n1 + (x2*sin(theta)*sin(x1))/n1)^2 - R^2 + ...
%     (r*cos(theta) + r*sin(theta)*(6*x1 - 6*sin(x1)) + (x2*sin(theta)*(2*cos(x1) - 2))/n1 + ...
%     (x2*cos(theta)*(3*x1 - 4*sin(x1)))/n1)^2;% 将符号函数转换为字符串
% f_str = char(f);% 1. 替换普通变量的平方为自乘形式
for i = 1:length(variables)% 构建正则表达式,匹配形如 x1^2, x2^2 等var_pattern = strcat(variables{i}, '^2');% 构建替换字符串 (x1*x1), (x2*x2)replacement = strcat('(', variables{i}, '*', variables{i}, ')');% 进行替换f_str = strrep(f_str, var_pattern, replacement);
end% % 找到 x[i]^2 形式的幂运算,并替换为 (x[i]*x[i])
f_str = regexprep(f_str, '(\w+\[\d+\])\^2', '$1*$1');% 2. 替换括号表达式的平方为自乘形式
% 匹配 (xxxx)^2,替换为 (xxxx)*(xxxx)
% f_str = regexprep(f_str, '\(([^\)]+)\)\^2', '($1)*($1)');
f_str = regexprep(f_str, '\((.*?)\)\^2', '($1)*($1)');% 输出替换后的表达式
disp(f_str);end

相关文章:

如何使用ipopt进行非线性约束求目标函数最小值(NLP非线性规划)内点法(inner point method)

非线性规划,一般用matlab调用cplex和gurobi了,但这两个一般用于线性规划和二次规划 线性规划LP,二次规划(quadratic programming),如果要求更一般的非线性规划IPOT是个很好的选择,求解器很多&a…...

【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题

【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题 一句话省流: 确保项目地址没有任何中文,重新申请个许可证,然后该咋就咋,完事。 ——————————————————————————————…...

回归分析在数据挖掘中的应用简析

一、引言 在数据驱动的时代,数据挖掘技术已成为从海量数据中提取有价值信息的关键工具。 回归分析,作为一种经典的统计学习方法,不仅在理论研究上有着深厚的基础,而且在实际 应用中也展现出强大的功能。 二、回归分析基础 2.1 回…...

【Node.js】worker_threads 多线程

Node.js 中的 worker_threads 模块 worker_threads 模块是 Node.js 中用于创建多线程处理的工具。 尽管 JavaScript 是单线程的,但有时候在处理计算密集型任务或长时间运行的操作时,单线程的运行会导致主线程被阻塞,影响服务器性能。 为了…...

贪心算法c++

贪心算法C概述 一、贪心算法的基本概念 贪心算法(Greedy Algorithm),又名贪婪法,是一种解决优化问题的常用算法。其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决…...

【STM32】 TCP/IP通信协议(3)--LwIP网络接口

LwIP协议栈支持多种不同的网络接口(网卡),由于网卡是直接跟硬件平台打交道,硬件不同则处理也是不同。那Iwip如何兼容这些不同的网卡呢? LwIP提供统一的接口,底层函数需要用户自行完成,例如网卡的…...

15分钟学 Python 第39天:Python 爬虫入门(五)

Day 39:Python 爬虫入门数据存储概述 在进行网页爬虫时,抓取到的数据需要存储以供后续分析和使用。常见的存储方式包括但不限于: 文件存储(如文本文件、CSV、JSON)数据库存储(如SQLite、MySQL、MongoDB&a…...

使用Pytorch构建自定义层并在模型中使用

使用Pytorch构建自定义层并在模型中使用 继承自nn.Module类,自定义名称为NoisyLinear的线性层,并在新模型定义过程中使用该自定义层。完整代码可以在jupyter nbviewer中在线访问。 import torch import torch.nn as nn from torch.utils.data import T…...

学习记录:js算法(五十六):从前序与中序遍历序列构造二叉树

文章目录 从前序与中序遍历序列构造二叉树我的思路网上思路 总结 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示…...

qt使用QDomDocument读写xml文件

在使用QDomDocument读写xml之前需要在工程文件添加: QT xml 1.生成xml文件 void createXml(QString xmlName) {QFile file(xmlName);if (!file.open(QIODevice::WriteOnly | QIODevice::Truncate |QIODevice::Text))return false;QDomDocument doc;QDomProcessin…...

Oracle架构之表空间详解

文章目录 1 表空间介绍1.1 简介1.2 表空间分类1.2.1 SYSTEM 表空间1.2.2 SYSAUX 表空间1.2.3 UNDO 表空间1.2.4 USERS 表空间 1.3 表空间字典与本地管理1.3.1 字典管理表空间(Dictionary Management Tablespace,DMT)1.3.2 本地管理方式的表空…...

springboot整合seata

一、准备 docker部署seata-server 1.5.2参考&#xff1a;docker安装各个组件的命令 二、springboot集成seata 2.1 引入依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-seata</artifactId>&…...

鸿蒙开发(NEXT/API 12)【二次向用户申请授权】程序访问控制

当应用通过[requestPermissionsFromUser()]拉起弹框[请求用户授权]时&#xff0c;用户拒绝授权。应用将无法再次通过requestPermissionsFromUser拉起弹框&#xff0c;需要用户在系统应用“设置”的界面中&#xff0c;手动授予权限。 在“设置”应用中的路径&#xff1a; 路径…...

docker export/import 和 docker save/load 的区别

Docker export/import 和 docker save/load 都是用于容器和镜像的备份和迁移&#xff0c;但它们有一些关键的区别&#xff1a; docker export/import: export 作用于容器&#xff0c;import 创建镜像导出的是容器的文件系统&#xff0c;不包含镜像的元数据丢失了镜像的层级结构…...

明星周边销售网站开发:SpringBoot技术全解析

1系统概述 1.1 研究背景 如今互联网高速发展&#xff0c;网络遍布全球&#xff0c;通过互联网发布的消息能快而方便的传播到世界每个角落&#xff0c;并且互联网上能传播的信息也很广&#xff0c;比如文字、图片、声音、视频等。从而&#xff0c;这种种好处使得互联网成了信息传…...

STM32+ADC+扫描模式

1 ADC简介 1 ADC(模拟到数字量的桥梁) 2 DAC(数字量到模拟的桥梁)&#xff0c;例如&#xff1a;PWM&#xff08;只有完全导通和断开的状态&#xff0c;无功率损耗的状态&#xff09; DAC主要用于波形生成&#xff08;信号发生器和音频解码器&#xff09; 3 模拟看门狗自动监…...

R语言绘制散点图

散点图是一种在直角坐标系中用数据点直观呈现两个变量之间关系、可检测异常值并探索数据分布的可视化图表。它是一种常用的数据可视化工具&#xff0c;我们通过不同的参数调整和包的使用&#xff0c;可以创建出满足各种需求的散点图。 常用绘制散点图的函数有plot()函数和ggpl…...

安装最新 MySQL 8.0 数据库(教学用)

安装 MySQL 8.0 数据库&#xff08;教学用&#xff09; 文章目录 安装 MySQL 8.0 数据库&#xff08;教学用&#xff09;前言MySQL历史一、第一步二、下载三、安装四、使用五、语法总结 前言 根据 DB-Engines 网站的数据库流行度排名&#xff08;2024年&#xff09;&#xff0…...

微信小程序开发-配置文件详解

文章目录 一&#xff0c;小程序创建的配置文件介绍二&#xff0c;配置文件-全局配置-pages 配置作用&#xff1a;注意事项&#xff1a;示例&#xff1a; 三&#xff0c;配置文件-全局配置-window 配置示例&#xff1a; 四&#xff0c;配置文件-全局配置-tabbar 配置核心作用&am…...

TCP/UDP初识

TCP是面向连接的、可靠的、基于字节流的传输层协议。 面向连接&#xff1a;一定是一对一连接&#xff0c;不能像 UDP 协议可以一个主机同时向多个主机发送消息 可靠的&#xff1a;无论的网络链路中出现了怎样的链路变化&#xff0c;TCP 都可以保证一个报文一定能够到达接收端…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

三体问题详解

从物理学角度&#xff0c;三体问题之所以不稳定&#xff0c;是因为三个天体在万有引力作用下相互作用&#xff0c;形成一个非线性耦合系统。我们可以从牛顿经典力学出发&#xff0c;列出具体的运动方程&#xff0c;并说明为何这个系统本质上是混沌的&#xff0c;无法得到一般解…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用

1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

2023赣州旅游投资集团

单选题 1.“不登高山&#xff0c;不知天之高也&#xff1b;不临深溪&#xff0c;不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...