当前位置: 首页 > news >正文

如何使用ipopt进行非线性约束求目标函数最小值(NLP非线性规划)内点法(inner point method)

非线性规划,一般用matlab调用cplex和gurobi了,但这两个一般用于线性规划和二次规划

线性规划LP,二次规划(quadratic programming),如果要求更一般的非线性规划IPOT是个很好的选择,求解器很多,根据情况自己选择

非线性

具体的,这篇文章介绍的很清楚了https://blog.csdn.net/mpt0816/article/details/127638557

我这里就是再选择一个问题进行求解

ipopt的可执行程序下载下来, Releases · coin-or/Ipopt · GitHub

建立一个vs2022的工程,把include加到目录里面,把lib库都加进去,同样dll也准备好

 

就这一个主文件放入工程

编译运行即可

四个自变量,两个约束

 eval_f: 计算目标函数值,即需要最小化的目标。

 eval_grad_f: 计算目标函数的梯度。分别是4个偏导数

 eval_g: 计算约束条件的值。 n 是变量个数,m是约束条件个数,g是具体的约束函数

 eval_jac_g: 计算约束条件的雅可比矩阵(两个约束条件的一阶偏导数)

 eval_h: 计算目标函数和约束条件的二阶导数(即Hessian矩阵,二阶偏导数)。

现在使用matlab符号函数把 涉及到 用的 梯度、黑森矩阵都求一下

%clear all
close all
clc% 使用符号函数进行 求解梯度,黑森矩阵syms f g1 g2
syms x1 x2 x3 x4% 定义目标函数
f = x1 * x4 * (x1 + x2 + x3) + x3;% 定义约束函数
g1 = x1 * x2 * x3 * x4;
g2 = x1^2 + x2^2 + x3^2 + x4^2;% 计算目标函数的梯度和 Hessian
grad_f = gradient(f, [x1, x2, x3, x4]);
hess_f = hessian(f, [x1, x2, x3, x4]);% 计算约束函数 g1 的梯度和 Hessian
grad_g1 = gradient(g1, [x1, x2, x3, x4]);
hess_g1 = hessian(g1, [x1, x2, x3, x4]);% 计算约束函数 g2 的梯度和 Hessian
grad_g2 = gradient(g2, [x1, x2, x3, x4]);
hess_g2 = hessian(g2, [x1, x2, x3, x4]);

得到如下结果:

目标函数 f 的梯度:
 x1*x4 + x4*(x1 + x2 + x3)
                     x1*x4
                 x1*x4 + 1
         x1*(x1 + x2 + x3)
 
目标函数 f 的 Hessian:
[           2*x4, x4, x4, 2*x1 + x2 + x3]
[             x4,  0,  0,             x1]
[             x4,  0,  0,             x1]
[ 2*x1 + x2 + x3, x1, x1,              0]
 
约束函数 g1 的梯度:
 x2*x3*x4
 x1*x3*x4
 x1*x2*x4
 x1*x2*x3

 约束函数 g2 的梯度:
 2*x1
 2*x2
 2*x3
 2*x4 

从g1 g2看出来

   nele_jac = 8; 8个非零,两个约束条件,4个变量
   nele_hess = 10;  4*5/2=10,看其中一个hess矩阵的上三角阵


约束函数 g1 的 Hessian:
[     0, x3*x4, x2*x4, x2*x3]
[ x3*x4,     0, x1*x4, x1*x3]
[ x2*x4, x1*x4,     0, x1*x2]
[ x2*x3, x1*x3, x1*x2,     0]
 

约束函数 g2 的 Hessian:
[ 2, 0, 0, 0]
[ 0, 2, 0, 0]
[ 0, 0, 2, 0]
[ 0, 0, 0, 2]
 要替换的部分

1、eval_f 中 目标函数

2、eval_grad_f 中的梯度

   grad_f[0] = x[0] * x[3] + x[3] * (x[0] + x[1] + x[2]);
   grad_f[1] = x[0] * x[3];
   grad_f[2] = x[0] * x[3] + 1;
   grad_f[3] = x[0] * (x[0] + x[1] + x[2]);

3、eval_g 约束条件
   g[0] = x[0] * x[1] * x[2] * x[3] + my_data->g_offset[0];
   g[1] = x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3] + my_data->g_offset[1];

4、eval_jac_g 约束函数的jacobi矩阵

if中 (8个),位置是

00  01 02 03

10 11 12 13,

else 中

g1梯度,g2梯度

5、eval_h 黑森矩阵

固定抄写,4是变量个数

目标的黑森矩阵,注意走位,注意骚走位,注意下三角阵骚走位

约束的黑森

6、主函数

初始值和 上下限

约束条件的jacobi矩阵和hess矩阵的非零元素

8个=2*自变量个数

10个=自变量个数*(自变量个数+1)/2

初始值

matlab符号函求解出来的各种算式写成c有点麻烦,我这边搞了一个函数可以很方便转c

function f_str = changetoc(f)syms x1 x2 x3 x4 %替换c语言风格
syms R %为了 R^2也能转% f = x1^2 + x2^2 + x3^2 + x4^2;  % 示例符号函数
% f = x1^2 + x2^2 + (x1 + x2)^2 + x3^2 + x4^2;  % 示例符号函数,包含复杂表达式
% f = (r*sin(theta)*(3*cos(x1) - 4) + (x2*cos(theta)*(2*cos(x1) - 2))/n1 + (x2*sin(theta)*sin(x1))/n1)^2% 将符号函数转换为字符串
f_str = char(f);% 替换变量为 C 风格的数组索引 x[0], x[1], x[2], x[3]
f_str = regexprep(f_str, 'x1', 'x[0]');
f_str = regexprep(f_str, 'x2', 'x[1]');
f_str = regexprep(f_str, 'x3', 'x[2]');
f_str = regexprep(f_str, 'x4', 'x[3]');% 定义一个集合(Cell数组)用于保存普通变量名
variables = {'x[0]','x[1]','x[2]','x[3]', 'R'};% 
% % 示例复杂表达式
% f = (r*sin(theta)*(3*cos(x1) - 4) + (x2*cos(theta)*(2*cos(x1) - 2))/n1 + (x2*sin(theta)*sin(x1))/n1)^2 - R^2 + ...
%     (r*cos(theta) + r*sin(theta)*(6*x1 - 6*sin(x1)) + (x2*sin(theta)*(2*cos(x1) - 2))/n1 + ...
%     (x2*cos(theta)*(3*x1 - 4*sin(x1)))/n1)^2;% 将符号函数转换为字符串
% f_str = char(f);% 1. 替换普通变量的平方为自乘形式
for i = 1:length(variables)% 构建正则表达式,匹配形如 x1^2, x2^2 等var_pattern = strcat(variables{i}, '^2');% 构建替换字符串 (x1*x1), (x2*x2)replacement = strcat('(', variables{i}, '*', variables{i}, ')');% 进行替换f_str = strrep(f_str, var_pattern, replacement);
end% % 找到 x[i]^2 形式的幂运算,并替换为 (x[i]*x[i])
f_str = regexprep(f_str, '(\w+\[\d+\])\^2', '$1*$1');% 2. 替换括号表达式的平方为自乘形式
% 匹配 (xxxx)^2,替换为 (xxxx)*(xxxx)
% f_str = regexprep(f_str, '\(([^\)]+)\)\^2', '($1)*($1)');
f_str = regexprep(f_str, '\((.*?)\)\^2', '($1)*($1)');% 输出替换后的表达式
disp(f_str);end

相关文章:

如何使用ipopt进行非线性约束求目标函数最小值(NLP非线性规划)内点法(inner point method)

非线性规划,一般用matlab调用cplex和gurobi了,但这两个一般用于线性规划和二次规划 线性规划LP,二次规划(quadratic programming),如果要求更一般的非线性规划IPOT是个很好的选择,求解器很多&a…...

【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题

【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题 一句话省流: 确保项目地址没有任何中文,重新申请个许可证,然后该咋就咋,完事。 ——————————————————————————————…...

回归分析在数据挖掘中的应用简析

一、引言 在数据驱动的时代,数据挖掘技术已成为从海量数据中提取有价值信息的关键工具。 回归分析,作为一种经典的统计学习方法,不仅在理论研究上有着深厚的基础,而且在实际 应用中也展现出强大的功能。 二、回归分析基础 2.1 回…...

【Node.js】worker_threads 多线程

Node.js 中的 worker_threads 模块 worker_threads 模块是 Node.js 中用于创建多线程处理的工具。 尽管 JavaScript 是单线程的,但有时候在处理计算密集型任务或长时间运行的操作时,单线程的运行会导致主线程被阻塞,影响服务器性能。 为了…...

贪心算法c++

贪心算法C概述 一、贪心算法的基本概念 贪心算法(Greedy Algorithm),又名贪婪法,是一种解决优化问题的常用算法。其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决…...

【STM32】 TCP/IP通信协议(3)--LwIP网络接口

LwIP协议栈支持多种不同的网络接口(网卡),由于网卡是直接跟硬件平台打交道,硬件不同则处理也是不同。那Iwip如何兼容这些不同的网卡呢? LwIP提供统一的接口,底层函数需要用户自行完成,例如网卡的…...

15分钟学 Python 第39天:Python 爬虫入门(五)

Day 39:Python 爬虫入门数据存储概述 在进行网页爬虫时,抓取到的数据需要存储以供后续分析和使用。常见的存储方式包括但不限于: 文件存储(如文本文件、CSV、JSON)数据库存储(如SQLite、MySQL、MongoDB&a…...

使用Pytorch构建自定义层并在模型中使用

使用Pytorch构建自定义层并在模型中使用 继承自nn.Module类,自定义名称为NoisyLinear的线性层,并在新模型定义过程中使用该自定义层。完整代码可以在jupyter nbviewer中在线访问。 import torch import torch.nn as nn from torch.utils.data import T…...

学习记录:js算法(五十六):从前序与中序遍历序列构造二叉树

文章目录 从前序与中序遍历序列构造二叉树我的思路网上思路 总结 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示…...

qt使用QDomDocument读写xml文件

在使用QDomDocument读写xml之前需要在工程文件添加: QT xml 1.生成xml文件 void createXml(QString xmlName) {QFile file(xmlName);if (!file.open(QIODevice::WriteOnly | QIODevice::Truncate |QIODevice::Text))return false;QDomDocument doc;QDomProcessin…...

Oracle架构之表空间详解

文章目录 1 表空间介绍1.1 简介1.2 表空间分类1.2.1 SYSTEM 表空间1.2.2 SYSAUX 表空间1.2.3 UNDO 表空间1.2.4 USERS 表空间 1.3 表空间字典与本地管理1.3.1 字典管理表空间(Dictionary Management Tablespace,DMT)1.3.2 本地管理方式的表空…...

springboot整合seata

一、准备 docker部署seata-server 1.5.2参考&#xff1a;docker安装各个组件的命令 二、springboot集成seata 2.1 引入依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-seata</artifactId>&…...

鸿蒙开发(NEXT/API 12)【二次向用户申请授权】程序访问控制

当应用通过[requestPermissionsFromUser()]拉起弹框[请求用户授权]时&#xff0c;用户拒绝授权。应用将无法再次通过requestPermissionsFromUser拉起弹框&#xff0c;需要用户在系统应用“设置”的界面中&#xff0c;手动授予权限。 在“设置”应用中的路径&#xff1a; 路径…...

docker export/import 和 docker save/load 的区别

Docker export/import 和 docker save/load 都是用于容器和镜像的备份和迁移&#xff0c;但它们有一些关键的区别&#xff1a; docker export/import: export 作用于容器&#xff0c;import 创建镜像导出的是容器的文件系统&#xff0c;不包含镜像的元数据丢失了镜像的层级结构…...

明星周边销售网站开发:SpringBoot技术全解析

1系统概述 1.1 研究背景 如今互联网高速发展&#xff0c;网络遍布全球&#xff0c;通过互联网发布的消息能快而方便的传播到世界每个角落&#xff0c;并且互联网上能传播的信息也很广&#xff0c;比如文字、图片、声音、视频等。从而&#xff0c;这种种好处使得互联网成了信息传…...

STM32+ADC+扫描模式

1 ADC简介 1 ADC(模拟到数字量的桥梁) 2 DAC(数字量到模拟的桥梁)&#xff0c;例如&#xff1a;PWM&#xff08;只有完全导通和断开的状态&#xff0c;无功率损耗的状态&#xff09; DAC主要用于波形生成&#xff08;信号发生器和音频解码器&#xff09; 3 模拟看门狗自动监…...

R语言绘制散点图

散点图是一种在直角坐标系中用数据点直观呈现两个变量之间关系、可检测异常值并探索数据分布的可视化图表。它是一种常用的数据可视化工具&#xff0c;我们通过不同的参数调整和包的使用&#xff0c;可以创建出满足各种需求的散点图。 常用绘制散点图的函数有plot()函数和ggpl…...

安装最新 MySQL 8.0 数据库(教学用)

安装 MySQL 8.0 数据库&#xff08;教学用&#xff09; 文章目录 安装 MySQL 8.0 数据库&#xff08;教学用&#xff09;前言MySQL历史一、第一步二、下载三、安装四、使用五、语法总结 前言 根据 DB-Engines 网站的数据库流行度排名&#xff08;2024年&#xff09;&#xff0…...

微信小程序开发-配置文件详解

文章目录 一&#xff0c;小程序创建的配置文件介绍二&#xff0c;配置文件-全局配置-pages 配置作用&#xff1a;注意事项&#xff1a;示例&#xff1a; 三&#xff0c;配置文件-全局配置-window 配置示例&#xff1a; 四&#xff0c;配置文件-全局配置-tabbar 配置核心作用&am…...

TCP/UDP初识

TCP是面向连接的、可靠的、基于字节流的传输层协议。 面向连接&#xff1a;一定是一对一连接&#xff0c;不能像 UDP 协议可以一个主机同时向多个主机发送消息 可靠的&#xff1a;无论的网络链路中出现了怎样的链路变化&#xff0c;TCP 都可以保证一个报文一定能够到达接收端…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘

美国西海岸的夏天&#xff0c;再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至&#xff0c;这不仅是开发者的盛宴&#xff0c;更是全球数亿苹果用户翘首以盼的科技春晚。今年&#xff0c;苹果依旧为我们带来了全家桶式的系统更新&#xff0c;包括 iOS 26、iPadOS 26…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作&#xff0c;无需更改相机配置。但是&#xff0c;一…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Map相关知识

数据结构 二叉树 二叉树&#xff0c;顾名思义&#xff0c;每个节点最多有两个“叉”&#xff0c;也就是两个子节点&#xff0c;分别是左子 节点和右子节点。不过&#xff0c;二叉树并不要求每个节点都有两个子节点&#xff0c;有的节点只 有左子节点&#xff0c;有的节点只有…...

《C++ 模板》

目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板&#xff0c;就像一个模具&#xff0c;里面可以将不同类型的材料做成一个形状&#xff0c;其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式&#xff1a;templa…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

c# 局部函数 定义、功能与示例

C# 局部函数&#xff1a;定义、功能与示例 1. 定义与功能 局部函数&#xff08;Local Function&#xff09;是嵌套在另一个方法内部的私有方法&#xff0c;仅在包含它的方法内可见。 • 作用&#xff1a;封装仅用于当前方法的逻辑&#xff0c;避免污染类作用域&#xff0c;提升…...

一些实用的chrome扩展0x01

简介 浏览器扩展程序有助于自动化任务、查找隐藏的漏洞、隐藏自身痕迹。以下列出了一些必备扩展程序&#xff0c;无论是测试应用程序、搜寻漏洞还是收集情报&#xff0c;它们都能提升工作流程。 FoxyProxy 代理管理工具&#xff0c;此扩展简化了使用代理&#xff08;如 Burp…...