解析TMalign文本文件中的转换矩阵
TM-align 将两个蛋白质结构通过旋转和位移对齐后:
TMalign test1.pdb test2.pdb -m mtx.txt
输出转换矩阵,文件内容为:
------ The rotation matrix to rotate Chain_1 to Chain_2 ------
m t[m] u[m][0] u[m][1] u[m][2]
0 0.7438770778 0.9928096071 0.1017845140 0.0629999746
1 3.6134235067 0.0559138503 0.0710345055 -0.9959054877
2 18.3578484222 -0.1058429281 0.9922671070 0.0648325754Code for rotating Structure A from (x,y,z) to (X,Y,Z):
for(i=0; i<L; i++)
{X[i] = t[0] + u[0][0]*x[i] + u[0][1]*y[i] + u[0][2]*z[i];Y[i] = t[1] + u[1][0]*x[i] + u[1][1]*y[i] + u[1][2]*z[i];Z[i] = t[2] + u[2][0]*x[i] + u[2][1]*y[i] + u[2][2]*z[i];
}
- 旋转矩阵
u是一个 3x3 的矩阵,用于定义结构 A 到结构 B 的旋转。 - 平移向量
t是一个长度为 3 的向量,用于定义结构 A 到结构 B 的平移。
解析为numpy array代码
方法一:
import numpy as np# 打开mtx.txt文本,读入数据
text = ""
with open("mtx.txt") as f:lines = f.readlines()# 1. 取数据行
data_lines = lines[2:5]# 初始化一个空列表来存储每一行的数值
data = []# 遍历每一行,提取数值
for line in data_lines:# 将每行按空白字符分割,并将数值转换为 floatvalues = [float(x) for x in line.split()[1:5]]data.append(values)# 转换为 numpy 数组
array = np.array(data)print(f"转换矩阵:{array}")t = array[:,0] # 平移向量
u = array[:,1:] # 旋转矩阵
print(f"平移向量:{t}")
print(f"平移旋转:{u}")
方法二:
# 打开mtx.txt文本,读入数据
with open("mtx.txt") as f:lines = f.readlines()# 1. 取数据行
data_lines = lines[2:5]# 2. 去掉每行的第一个索引,留下数值部分
cleaned_lines = []
for line in data_lines:# 使用split分割并去掉每行的第一个元素(索引),保留数值部分cleaned_line = ' '.join(line.split()[1:5])cleaned_lines.append(cleaned_line)print(f"cleaned_lines:{cleaned_lines}")# 3. 将数值部分拼接成一个字符串,用于 fromstring 解析
data_string = ' '.join(cleaned_lines)
print("data_string")
print(data_string)# 4. 使用 numpy.fromstring 解析数值字符串
array = np.fromstring(data_string, sep=' ')# 5. 将生成的数组reshape为合适的形状 (3, 4)
array = array.reshape(3, 4)
print(array)### 简洁形式
array = np.fromstring(' '.join(l[2:] for l in lines[2:5]), dtype=float, sep=' ').reshape((3,4))print(f"转换矩阵:{array}")t = array[:,0] # 平移向量
u = array[:,1:] # 旋转矩阵
print(f"平移向量:{t}")
print(f"平移旋转:{u}")
相关文章:
解析TMalign文本文件中的转换矩阵
TM-align 将两个蛋白质结构通过旋转和位移对齐后: TMalign test1.pdb test2.pdb -m mtx.txt 输出转换矩阵,文件内容为: ------ The rotation matrix to rotate Chain_1 to Chain_2 ------ m t[m] u[m][0] u[…...
vue.js组建开发
Vue.js是一个用于构建用户界面的渐进式JavaScript框架。它采用了组件化的开发方式,将UI界面拆分成多个可重用的组件,通过组合这些组件来构建复杂的应用程序。在本文中,我们将探讨Vue.js组件开发的相关概念和技术。 一、组件化开发的优势 组件…...
D29【python 接口自动化学习】- python基础之输入输出与文件操作
day29 格式化输出 学习日期:20241006 学习目标:输入输出与文件操作﹣-41 格式化输出:如何将执行结果通过屏幕输出? 学习笔记: 三种常用的格式化输出方式 百分号方式 format函数方式 总结 1. 格式化输出…...
jQuery——平滑翻页
平滑翻页 param next true:下一页 false:下一页 本文分享到此结束,欢迎大家评论区相互讨论学习,下一篇继续分享jQuery中循环翻页的学习。...
二叉树--DS
1. 树 1.1 树的定义 树是一种非线性的数据结构,它是由n (n > 0)个有限结点组成的一个具有层次关系的集合。之所以将它称为“树”,是因为它像一颗倒挂起来的树,也就是说它是根朝上,叶子在下的。 参考上面的图片,…...
State of ChatGPT ---- ChatGPT的技术综述
声明:该文总结自AI菩萨Andrej Karpathy在youtube发布的演讲视频。 原视频连接:State of GPT | BRK216HFS 基础知识: Transformer原文带读与代码实现https://blog.csdn.net/m0_62716099/article/details/141289541?spm1001.2014.3001.5501 H…...
构建高效新闻推荐系统:Spring Boot的力量
1系统概述 1.1 研究背景 如今互联网高速发展,网络遍布全球,通过互联网发布的消息能快而方便的传播到世界每个角落,并且互联网上能传播的信息也很广,比如文字、图片、声音、视频等。从而,这种种好处使得互联网成了信息传…...
如何使用ipopt进行非线性约束求目标函数最小值(NLP非线性规划)内点法(inner point method)
非线性规划,一般用matlab调用cplex和gurobi了,但这两个一般用于线性规划和二次规划 线性规划LP,二次规划(quadratic programming),如果要求更一般的非线性规划IPOT是个很好的选择,求解器很多&a…...
【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题
【Unity学习笔记】解决疑似升级Win11或使用Unity6导致Unity旧版本无法打开的问题 一句话省流: 确保项目地址没有任何中文,重新申请个许可证,然后该咋就咋,完事。 ——————————————————————————————…...
回归分析在数据挖掘中的应用简析
一、引言 在数据驱动的时代,数据挖掘技术已成为从海量数据中提取有价值信息的关键工具。 回归分析,作为一种经典的统计学习方法,不仅在理论研究上有着深厚的基础,而且在实际 应用中也展现出强大的功能。 二、回归分析基础 2.1 回…...
【Node.js】worker_threads 多线程
Node.js 中的 worker_threads 模块 worker_threads 模块是 Node.js 中用于创建多线程处理的工具。 尽管 JavaScript 是单线程的,但有时候在处理计算密集型任务或长时间运行的操作时,单线程的运行会导致主线程被阻塞,影响服务器性能。 为了…...
贪心算法c++
贪心算法C概述 一、贪心算法的基本概念 贪心算法(Greedy Algorithm),又名贪婪法,是一种解决优化问题的常用算法。其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决…...
【STM32】 TCP/IP通信协议(3)--LwIP网络接口
LwIP协议栈支持多种不同的网络接口(网卡),由于网卡是直接跟硬件平台打交道,硬件不同则处理也是不同。那Iwip如何兼容这些不同的网卡呢? LwIP提供统一的接口,底层函数需要用户自行完成,例如网卡的…...
15分钟学 Python 第39天:Python 爬虫入门(五)
Day 39:Python 爬虫入门数据存储概述 在进行网页爬虫时,抓取到的数据需要存储以供后续分析和使用。常见的存储方式包括但不限于: 文件存储(如文本文件、CSV、JSON)数据库存储(如SQLite、MySQL、MongoDB&a…...
使用Pytorch构建自定义层并在模型中使用
使用Pytorch构建自定义层并在模型中使用 继承自nn.Module类,自定义名称为NoisyLinear的线性层,并在新模型定义过程中使用该自定义层。完整代码可以在jupyter nbviewer中在线访问。 import torch import torch.nn as nn from torch.utils.data import T…...
学习记录:js算法(五十六):从前序与中序遍历序列构造二叉树
文章目录 从前序与中序遍历序列构造二叉树我的思路网上思路 总结 从前序与中序遍历序列构造二叉树 给定两个整数数组 preorder 和 inorder ,其中 preorder 是二叉树的先序遍历, inorder 是同一棵树的中序遍历,请构造二叉树并返回其根节点。 示…...
qt使用QDomDocument读写xml文件
在使用QDomDocument读写xml之前需要在工程文件添加: QT xml 1.生成xml文件 void createXml(QString xmlName) {QFile file(xmlName);if (!file.open(QIODevice::WriteOnly | QIODevice::Truncate |QIODevice::Text))return false;QDomDocument doc;QDomProcessin…...
Oracle架构之表空间详解
文章目录 1 表空间介绍1.1 简介1.2 表空间分类1.2.1 SYSTEM 表空间1.2.2 SYSAUX 表空间1.2.3 UNDO 表空间1.2.4 USERS 表空间 1.3 表空间字典与本地管理1.3.1 字典管理表空间(Dictionary Management Tablespace,DMT)1.3.2 本地管理方式的表空…...
springboot整合seata
一、准备 docker部署seata-server 1.5.2参考:docker安装各个组件的命令 二、springboot集成seata 2.1 引入依赖 <dependency><groupId>com.alibaba.cloud</groupId><artifactId>spring-cloud-starter-alibaba-seata</artifactId>&…...
鸿蒙开发(NEXT/API 12)【二次向用户申请授权】程序访问控制
当应用通过[requestPermissionsFromUser()]拉起弹框[请求用户授权]时,用户拒绝授权。应用将无法再次通过requestPermissionsFromUser拉起弹框,需要用户在系统应用“设置”的界面中,手动授予权限。 在“设置”应用中的路径: 路径…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...
uniapp 开发ios, xcode 提交app store connect 和 testflight内测
uniapp 中配置 配置manifest 文档:manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号:4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...
c# 局部函数 定义、功能与示例
C# 局部函数:定义、功能与示例 1. 定义与功能 局部函数(Local Function)是嵌套在另一个方法内部的私有方法,仅在包含它的方法内可见。 • 作用:封装仅用于当前方法的逻辑,避免污染类作用域,提升…...
FFmpeg avformat_open_input函数分析
函数内部的总体流程如下: avformat_open_input 精简后的代码如下: int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...
GraphQL 实战篇:Apollo Client 配置与缓存
GraphQL 实战篇:Apollo Client 配置与缓存 上一篇:GraphQL 入门篇:基础查询语法 依旧和上一篇的笔记一样,主实操,没啥过多的细节讲解,代码具体在: https://github.com/GoldenaArcher/graphql…...
【WebSocket】SpringBoot项目中使用WebSocket
1. 导入坐标 如果springboot父工程没有加入websocket的起步依赖,添加它的坐标的时候需要带上版本号。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dep…...
热门Chrome扩展程序存在明文传输风险,用户隐私安全受威胁
赛门铁克威胁猎手团队最新报告披露,数款拥有数百万活跃用户的Chrome扩展程序正在通过未加密的HTTP连接静默泄露用户敏感数据,严重威胁用户隐私安全。 知名扩展程序存在明文传输风险 尽管宣称提供安全浏览、数据分析或便捷界面等功能,但SEMR…...
