requests 中data=xxx、json=xxx、params=xxx 分别什么时候用
如果是要做爬虫模拟一个页面提交,看原页面是post还是get,以及Content-Type是什么。
- GET 请求 使用
params=xxx
,查询参数会被编码到 URL 中。 - POST 请求,Content-Type为
application/x-www-form-urlencoded
的,使用data=xxx,
(常见于直接 HTML 表单提交)。 - POST 请求,Content-Type为
application/json
的 使用json=xxx
,常见于通过ajax提交。 - POST 请求,Content-Type为
multipart/form-data的,有上传文件,使用files=files, data=xxx
(常见于直接 HTML 表单提交)
-------
- 如果post请求同时传递 data 和 json 参数时,requests 库会自动忽略 data,并且只发送 json 中的数据作为请求体
- post请求可以带params=xxx 这个参数。response = requests.post(url, json=json_data, params=xxx) 不会报错。
- GET 请求不能带 json=json_data 参数。若使你尝试传递
json=json_data
参数,requests
库会忽略它
--------
如果multipart/form-data中一次请求上传多个文件,则
files = {'file1': ('file1.jpg', file1, 'image/jpeg'),'file2': ('file2.jpg', file2, 'image/jpeg')}
GET 请求:
import requestsurl = 'https://example.com/api'
params = {'name': 'John','age': 30
}response = requests.get(url, params=params)
相当于get访问 URL:https://example.com/api?name=John&age=30
POST请求:application/x-www-form-urlencoded
import requestsurl = 'https://example.com/api'
data = {'name': 'John','age': 30
}response = requests.post(url, data=data)
相当于直接网页提交表单
POST请求 application/json (常见于AJAX提交)
import requestsurl = 'https://example.com/api'
data = {'name': 'John','age': 30
}response = requests.post(url, json=data)
POST请求 multipart/form-data
import requestsurl = 'https://acc.abc.com/api/home/UploadIDCard'# 文件部分
file_path = 'path/to/your/file.jpg'
with open(file_path, 'rb') as file:files = {'Files': ('idcard_front.jpg', file, 'image/jpeg') # (filename, file-object, mime-type)}# 其他参数部分data = {'name': 'John','age': 30}# 发起POST请求response = requests.post(url, files=files, data=data)
import requestsurl = 'https://example.com/upload'# 打开多个文件
file1_path = 'path/to/your/file1.jpg'
file2_path = 'path/to/your/file2.jpg'with open(file1_path, 'rb') as file1, open(file2_path, 'rb') as file2:files = {'file1': ('idcard_front.jpg', file1, 'image/jpeg'),'file2': ('idcard_back.jpg', file2, 'image/jpeg')}# 其他参数部分data = {'name': 'John','age': 30}# 发起POST请求,上传多个文件response = requests.post(url, files=files, data=data)
相关文章:
requests 中data=xxx、json=xxx、params=xxx 分别什么时候用
如果是要做爬虫模拟一个页面提交,看原页面是post还是get,以及Content-Type是什么。 GET 请求 使用 paramsxxx,查询参数会被编码到 URL 中。POST 请求,Content-Type为 application/x-www-form-urlencoded的,使用 dataxx…...

毕设 大数据抖音短视频数据分析与可视化(源码)
文章目录 0 前言1 课题背景2 数据清洗3 数据可视化地区-用户观看时间分界线每周观看观看路径发布地点视频时长整体点赞、完播 4 进阶分析相关性分析留存率 5 深度分析客户价值判断 0 前言 🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕…...
【SQL】深入理解SQL:从基础概念到常用命令
目录 1. SQL基础概念1.1 数据库与表1.2 行与列1.3 数据库与表结构示意图 2. 常用SQL命令3. DML 命令3.1 SELECT语句3.2 INSERT语句3.3 UPDATE语句3.4 DELETE语句 4. DDL 命令3.4.1 CREATE 命令3.4.2 ALTER 命令3.4.3 DROP 命令 5. DCL 命令3.6.1 GRANT 命令3.6.2 REVOKE 命令 学…...

一文看懂计算机中的大小端(Endianess)
文章目录 前言一、什么是大小端二、如何判断大小端三、大小端的转换3.1 使用标准库函数3.2 手动实现大小端转换 前言 本文主要探讨计算机中大小端的相关概念以及如何进行大小端的判断和转换等。 一、什么是大小端 大小端(Endianess)是指计算机系统在存…...
如何给父母安排体检?
总结:给父母安排体检,常规项目针对项目。 其中针对项目是根据父母自身的病史来设计。 如何快速了解这些体检项目?我自己认为最快的方式,自己去医院体检两次,这样对体检的项目有一定的了解,比如这个项目怎么…...

C++之模版进阶篇
目录 前言 1.非类型模版参数 2.模版的特化 2.1概念 2.2函数模版特化 2.3 类模板特化 2.3.1 全特化和偏特化 2.3.2类模版特化应用实例 3.模版分离编译 3.1 什么是分离编译 3.2 模板的分离编译 3.3 解决方法 4. 模板总结 结束语 前言 在模版初阶我们学习了函数模版和类…...
Vue3 中的 `replace` 属性:优化路由导航的利器
嘿,小伙伴们!今天给大家带来一个Vue3中非常实用的小技巧——replace属性的使用方法。在Vue Router中,replace属性可以帮助我们在导航时不留下历史记录,这对于一些特定的应用场景非常有用。话不多说,让我们直接进入实战…...

vite学习教程06、vite.config.js配置
前言 博主介绍:✌目前全网粉丝3W,csdn博客专家、Java领域优质创作者,博客之星、阿里云平台优质作者、专注于Java后端技术领域。 涵盖技术内容:Java后端、大数据、算法、分布式微服务、中间件、前端、运维等。 博主所有博客文件…...

【大数据】Flink CDC 实时同步mysql数据
目录 一、前言 二、Flink CDC介绍 2.1 什么是Flink CDC 2.2 Flink CDC 特点 2.3 Flink CDC 核心工作原理 2.4 Flink CDC 使用场景 三、常用的数据同步方案对比 3.1 数据同步概述 3.1.1 数据同步来源 3.2 常用的数据同步方案汇总 3.3 为什么推荐Flink CDC 3.4 Flink …...

JavaEE: 深入解析HTTP协议的奥秘(1)
文章目录 HTTPHTTP 是什么HTTP 协议抓包fiddle 用法 HTTP 请求响应基本格式 HTTP HTTP 是什么 HTTP 全称为"超文本传输协议". HTTP不仅仅能传输文本,还能传输图片,传输音频文件,传输其他的各种数据. 因此它广泛应用在日常开发的各种场景中. HTTP 往往是基于传输层的…...

OpenStack Yoga版安装笔记(十六)Openstack网络理解
0、前言 本文将以Openstack在Linux Bridge环境下的应用为例进行阐述。 1、Openstack抽象网络 OpenStack的抽象网络主要包括网络(network)、子网(subnet)、端口(port),路由器(rout…...
PEFT库和transformers库在NLP大模型中的使用和常用方法详解
PEFT(Parameter-Efficient Fine-Tuning)库是一个用于有效微调大型预训练语言模型的工具,尤其是在计算资源有限的情况下。它提供了一系列技术,旨在提高微调过程的效率和灵活性。以下是PEFT库的详细解读以及一些常用方法的总结&…...

静止坐标系和旋转坐标系变换的线性化,锁相环线性化通用推导
将笛卡尔坐标系的电压 [ U x , U y ] [U_x, U_y] [Ux,Uy] 通过旋转变换(由锁相环角度 θ P L L \theta_{PLL} θPLL 控制)转换为 dq 坐标系下的电压 [ U d , U q ] [U_d, U_q] [Ud,Uq]。这个公式是非线性的,因为它涉及到正弦和余弦函数。 图片中的推导过程主要…...
AI学习指南深度学习篇-学习率衰减的变体及扩展应用
AI学习指南深度学习篇 - 学习率衰减的变体及扩展应用 在深度学习的训练过程中,学习率的选择对模型的收敛速度和最终效果有重要影响。为了提升模型性能,学习率衰减(Learning Rate Decay)作为一种优化技术被广泛应用。本文将探讨多…...

成都睿明智科技有限公司真实可靠吗?
在这个日新月异的电商时代,抖音作为短视频与直播电商的佼佼者,正以前所未有的速度重塑着消费者的购物习惯。而在这片充满机遇与挑战的蓝海中,成都睿明智科技有限公司以其独到的眼光和专业的服务,成为了众多商家信赖的合作伙伴。今…...

力扣6~10题
题6(中等): 思路: 这个相较于前面只能是简单,个人认为,会print打印菱形都能搞这个,直接设置一个2阶数组就好了,只要注意位置变化就好了 python代码: def convert(self,…...

IntelliJ IDEA 2024.2 新特性概览
文章目录 1、重点特性:1.1 改进的 Spring Data JPA 支持1.2 改进的 cron 表达式支持1.3 使用 GraalJS 作为 HTTP 客户端的执行引擎1.4 更快的编码时间1.5 K2 模式下的 Kotlin 性能和稳定性改进 2、用户体验2.1 改进的全行代码补全2.2 新 UI 成为所有用户的默认界面2.3 Search E…...
C++基础(12)——初识list
目录 1.list的简介(引用自cplusplus官网) 2.list的相关使用 2.1有关list的定义 2.1.1方式一(构造某类型的空容器) 2.1.2方式二(构造n个val的容器) 2.1.3方式三(拷贝构造) 2.1.4…...

系统架构设计师论文《论NoSQL数据库技术及其应用》精选试读
论文真题 随着互联网web2.0网站的兴起,传统关系数据库在应对web2.0 网站,特别是超大规模和高并发的web2.0纯动态SNS网站上已经显得力不从心,暴露了很多难以克服的问题,而非关系型的数据库则由于其本身的特点得到了非常迅速的发展…...

产品经理产出的原型设计 - 需求文档应该怎么制作?
需求文档,产品经理最终产出的文档,也是产品设计最终的表述形式。本次分享呢,就是介绍如何写好一份需求文档。 所有元件均可复用,可作为管理端原型设计模板,按照实际项目需求进行功能拓展。有需要的话可分享源文件。 …...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...

观成科技:隐蔽隧道工具Ligolo-ng加密流量分析
1.工具介绍 Ligolo-ng是一款由go编写的高效隧道工具,该工具基于TUN接口实现其功能,利用反向TCP/TLS连接建立一条隐蔽的通信信道,支持使用Let’s Encrypt自动生成证书。Ligolo-ng的通信隐蔽性体现在其支持多种连接方式,适应复杂网…...

【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...

3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...

Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...