当前位置: 首页 > news >正文

【深度学习】损失函数

        损失函数(Loss Function)是机器学习和深度学习模型中的一个核心概念,它用于衡量模型的预测输出与真实标签之间的差异。通过优化(最小化)损失函数,模型可以不断调整其内部参数,提升预测性能。不同任务和模型类型会使用不同的损失函数,具体的选择通常取决于问题的性质。

        首先,假设我们存在n个样本,将n个样本的实际数值以及预测数值作差求和即可得到整体模型的预测输出与真实标签之间的差异。但是考虑到如果是简单的绝对值求和,在其定义域上并非是全程可导的,这样对于梯度下降法的运用并不友好。因此,我们可以对其求平方和,也就是所说的“最小二乘法”,这样可以进行模型差异的判断,但是运用梯度下降法也是很麻烦的。

         我们将会引入一个极大似然估计的方法,在概率论中,我们可以知道,如果我们已知真实的分布情况和许多概率模型,我们就可以求出在某种概率模型下,这种分布情况发生的概率,而最大的那个概率值对应的模型便是最接近真实的概率模型。

        同样,我们将这种理念运用到损失函数中,如果我们已知真实的样本分布和许多训练模型(即W和b),在二分类的情况下,我们知道,真实样本存在两种分布0(不是)或1(是),也就是我们常说的伯努利分布。对于真实的样本分布中的其中单个样本,存在两种情况0或1,而对应的概率模型为yi,即w和b权重下经过激活函数处理后得到的概率值。这样说,可能还是比较难以去理解,如果我们假设x1这个样本是猫(数值为1),而y1预测值为0.9,这时候进行计算可以得到似然值为0.9,假设x2这个样本不是猫(数值为0),而y2预测值为0.2,这时候进行计算可以得到似然值为0.8,总似然值为0.72。

        为了简化运算,我们可以将连成变为连加,对整体进行对数运算,可以得到类似于交叉熵结构的公式。

         总结一下,不同的机器学习问题有着不同的损失函数:

相关文章:

【深度学习】损失函数

损失函数(Loss Function)是机器学习和深度学习模型中的一个核心概念,它用于衡量模型的预测输出与真实标签之间的差异。通过优化(最小化)损失函数,模型可以不断调整其内部参数,提升预测性能。不同…...

力扣 中等 46.全排列

文章目录 题目介绍题解 题目介绍 题解 代码如下&#xff1a; class Solution {List<List<Integer>> res new ArrayList<>();// 存放符合条件结果的集合List<Integer> path new ArrayList<>();// 用来存放符合条件结果boolean[] used; // 标记…...

LabVIEW机床加工监控系统

随着制造业的快速发展&#xff0c;机床加工的效率与稳定性成为企业核心竞争力的关键。传统的机床监控方式存在效率低、无法远程监控的问题。为了解决这些问题&#xff0c;开发了一种基于LabVIEW的机床加工监控系统&#xff0c;通过实时监控机床状态&#xff0c;改进生产流程&am…...

第五届智能设计国际会议(ICID 2024)

文章目录 一、会议详情二、重要信息三、大会介绍四、出席嘉宾五、征稿主题六、咨询 一、会议详情 二、重要信息 大会官网&#xff1a;https://ais.cn/u/vEbMBz提交检索&#xff1a;EI Compendex、IEEE Xplore、Scopus大会时间&#xff1a;2024年10月25-27日大会地点&#xff1…...

厨房用品分割系统源码&数据集分享

厨房用品分割系统源码&#xff06;数据集分享 [yolov8-seg-C2f-DCNV3&#xff06;yolov8-seg-AFPN-P345等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Global Al ln…...

【HTTPS】深入解析 https

我的主页&#xff1a;2的n次方_ 1. 背景介绍 在使用 http 协议的时候是不安全的&#xff0c;可能会出现运营商劫持等安全问题&#xff0c;运营商通过劫持 http 流量&#xff0c;篡改返回的网页内容&#xff0c;例如广告业务&#xff0c;可能会通过 Referer 字段 来统计是…...

Axios 快速入门

什么是Ajax Ajax 是一种通过 JavaScript 发送异步请求的技术&#xff0c;它的核心是使用 XMLHttpRequest 对象来与服务器交换数据。这种方式较为繁琐&#xff0c;因为需要手动处理请求状态和响应&#xff0c;并且编写的代码往往比较冗长。 相较之下&#xff0c;Axios 是一个基于…...

LabVIEW提高开发效率技巧----调度器设计模式

在LabVIEW开发中&#xff0c;针对多任务并行的需求&#xff0c;使用调度器设计模式&#xff08;Scheduler Pattern&#xff09;可以有效地管理多个任务&#xff0c;确保它们根据优先级或时间间隔合理执行。这种模式在需要多任务并发执行时特别有用&#xff0c;尤其是在实时系统…...

python之认识变量

1、变量 1.1、定义 字面意思来看&#xff0c;会发生改变的量称为变量。 相反的&#xff0c;如果有一个不会发生改变的量&#xff0c;它应该称为不变量&#xff0c;即常量。 1.2、引入变量的原因 主要是为了方便程序员动态的管理、操控数据。 1.3、变量的三要素 名称 类型…...

c++应用网络编程之十Linux下的Poll模式

一、Poll模式 在上一篇文章中提到了Select模式的缺点。既然有缺点&#xff0c;就要改正。但是直接在Select模式上修改不太现实&#xff0c;那么就推出一个新的模式不更香么&#xff1f;poll模式就应运而生了。不过&#xff0c;罗马不是一天建成的&#xff0c;poll模式也只是对…...

[C++][第三方库][RabbitMq]详细讲解

目录 1.介绍2.安装1.RabbitMq2.客户端库 3.AMQP-CPP 简单使用1.介绍2.使用 4.类与接口1.Channel2.ev 5.使用1.publish.cc2.consume.cc3.makefile 1.介绍 RabbitMQ&#xff1a;消息队列组件&#xff0c;实现两个客户端主机之间消息传输的功能(发布&订阅)核心概念&#xff1…...

Next.js 详解

Next.js是一个基于React的开源JavaScript框架&#xff0c;由Vercel&#xff08;原Zeit&#xff09;公司开发。它旨在简化React应用的构建过程&#xff0c;并提供了一系列强大的功能来优化性能和开发体验。以下是对Next.js的详细解析&#xff1a; 一、核心特性 服务器端渲染&…...

pygame--超级马里奥(万字详细版)

超级马里奥点我下载https://github.com/marblexu/PythonSuperMario 1.游戏介绍 小时候的经典游戏&#xff0c;代码参考了github上的项目Mario-Level-1&#xff0c;使用pygame来实现&#xff0c;从中学习到了横版过关游戏实现中的一些处理方法。原项目实现了超级玛丽的第一个小…...

【运维】nginx静态代理资源403权限问题

如题&#xff0c;遇到静态代理资源访问403&#xff0c;可以尝试检查其文件权限&#xff0c;父目录权限&#xff0c;需要确保 "目录使用标准的 755&#xff0c;对文件使用 644&#xff08;umask&#xff1a;022&#xff09;" 参考资料&#xff1a; 1. nginx “403 …...

java家政预约上门系统源码,家政服务平台源码,基于SpringBoot框架,数据库使用MySQL,界面渲染采用Thymeleaf技术开发

自主知识产权的家政预约上门系统源码&#xff0c;java版本&#xff0c;支持二次开发&#xff0c;适合商用上项目。 在这个快节奏的现代生活中&#xff0c;越来越多的家庭开始寻求高效、便捷的家政服务解决方案。传统的家政服务模式已经很难满足人们日益增长的个性化与即时性需求…...

算法知识点————贪心

贪心&#xff1a;只考虑局部最优解&#xff0c;不考虑全部最优解。有时候得不到最优解。 DP&#xff1a;考虑全局最优解。DP的特点&#xff1a;无后效性&#xff08;正在求解的时候不关心前面的解是怎么求的&#xff09;&#xff1b; 二者都是在求最优解的&#xff0c;都有最优…...

python数据分析

Python是一种非常流行的编程语言&#xff0c;尤其在数据分析领域。Python拥有丰富的库和框架&#xff0c;可以帮助你执行各种数据分析任务。Python常用的数据分析工具之一&#xff1a;NumPy。 Numpy用于进行大规模数值和矩阵运算&#xff0c;提供了多维数组对象和一系列操作这…...

UGUI(现成组合控件)

Drop Down Scroll View Scroll Bar size是滚动条的填充程度 Slider 如果设置为静态&#xff0c;那么传入的值始终为自己设置的那个值 Input Field content type为standard时 可以设置line type&#xff0c; 只读不改&#xff0c;就是可以复制&#xff0c;但是你已经不能输入了…...

软件交付体系文件(Word源资料)

软件文档交付清单是指在软件开发项目完成后&#xff0c;开发团队需要准备的一份详细清单&#xff0c;用于确保交付的软件产品符合客户需求并达到预期的质量标准。以下是软件文档交付清单中可能包含的一些关键要素 软件全套资料部分文档清单&#xff1a; 工作安排任务书&#xf…...

【视频目标分割-2024CVPR】Putting the Object Back into Video Object Segmentation

Cutie 系列文章目录1 摘要2 引言2.1背景和难点2.2 解决方案2.3 成果 3 相关方法3.1 基于记忆的VOS3.2对象级推理3.3 自动视频分割 4 工作方法4.1 overview4.2 对象变换器4.2.1 overview4.2.2 Foreground-Background Masked Attention4.2.3 Positional Embeddings 4.3 Object Me…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

C++:std::is_convertible

C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...

Spring Boot 实现流式响应(兼容 2.7.x)

在实际开发中&#xff0c;我们可能会遇到一些流式数据处理的场景&#xff0c;比如接收来自上游接口的 Server-Sent Events&#xff08;SSE&#xff09; 或 流式 JSON 内容&#xff0c;并将其原样中转给前端页面或客户端。这种情况下&#xff0c;传统的 RestTemplate 缓存机制会…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

Java + Spring Boot + Mybatis 实现批量插入

在 Java 中使用 Spring Boot 和 MyBatis 实现批量插入可以通过以下步骤完成。这里提供两种常用方法&#xff1a;使用 MyBatis 的 <foreach> 标签和批处理模式&#xff08;ExecutorType.BATCH&#xff09;。 方法一&#xff1a;使用 XML 的 <foreach> 标签&#xff…...

C++:多态机制详解

目录 一. 多态的概念 1.静态多态&#xff08;编译时多态&#xff09; 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1&#xff09;.协变 2&#xff09;.析构函数的重写 5.override 和 final关键字 1&#…...

快刀集(1): 一刀斩断视频片头广告

一刀流&#xff1a;用一个简单脚本&#xff0c;秒杀视频片头广告&#xff0c;还你清爽观影体验。 1. 引子 作为一个爱生活、爱学习、爱收藏高清资源的老码农&#xff0c;平时写代码之余看看电影、补补片&#xff0c;是再正常不过的事。 电影嘛&#xff0c;要沉浸&#xff0c;…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事&#xff0c;必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后&#xff0c;我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集&#xff0c;就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...