道路积水检测数据集 1450张 路面积水 带分割 voc yolo
道路积水检测数据集 1450张 路面积水 带分割 voc yolo

分类名: (图片张数, 标注个数)
puddle:(1468,1994)
总数:(1468,1994)
总类(nc): 1类
道路积水检测数据集介绍
项目名称
道路积水检测数据集
项目概述
本数据集包含1450张带有标注的图像,专门用于训练和测试道路积水检测模型。每张图像都标注了积水区域的位置,使用VOC和YOLO格式进行标注。该数据集旨在帮助研究人员和开发者构建能够准确检测和识别道路积水区域的深度学习模型。
数据集特点

- 高质量标注:每张图像都进行了详细的标注,包括类别和边界框。
- 多用途:适用于目标检测和语义分割任务,特别是涉及道路积水的场景。
- 易于使用:提供了详细的说明文档,方便用户快速上手。
数据集结构
Road_Puddle_Detection_Dataset/
├── images/ # 图像文件夹
│ ├── train/ # 训练集图像
│ └── test/ # 测试集图像
├── annotations/ # 标注文件夹
│ ├── train/ # 训练集标注
│ └── test/ # 测试集标注
├── README.md # 项目说明文档
└── data_split.py # 数据集划分脚本
数据集内容
- 总数据量:1450张图像。
- 标注格式:VOC和YOLO格式。
- 标注对象:道路积水区域。
- 类别:
- 积水 (Puddle)

具体类别及数量如下:
| 类别名 | 图像数量 | 标注个数 |
|---|---|---|
| 积水 (Puddle) | 1468 | 1994 |
总计
- 图像总数:1468张
- 标注总数:1994个
- 总类别数 (nc):1类
使用说明
-
环境准备:
- 确保安装了Python及其相关库(如
shutil、sklearn等)。 - 下载并解压数据集到项目根目录。
- 确保安装了Python及其相关库(如
-
运行数据集划分脚本:
- 在命令行中运行
data_split.py脚本,将数据集划分为训练集和测试集。 - 运行后,
images/和annotations/目录下会生成train/和test/子目录。
- 在命令行中运行
-
加载数据集:
- 可以使用常见的深度学习框架(如PyTorch、TensorFlow等)来加载数据集。
- 示例代码如下
import torch
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
import cv2
import os
import xml.etree.ElementTree as ETclass RoadPuddleDataset(Dataset):def __init__(self, image_dir, annotation_dir, transform=None):self.image_dir = image_dirself.annotation_dir = annotation_dirself.transform = transformself.image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg') or f.endswith('.png')]def __len__(self):return len(self.image_files)def __getitem__(self, idx):img_path = os.path.join(self.image_dir, self.image_files[idx])annotation_path = os.path.join(self.annotation_dir, self.image_files[idx].replace('.jpg', '.xml').replace('.png', '.xml'))image = cv2.imread(img_path)image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)tree = ET.parse(annotation_path)root = tree.getroot()boxes = []labels = []for obj in root.findall('object'):label = obj.find('name').textbbox = obj.find('bndbox')xmin = int(bbox.find('xmin').text)ymin = int(bbox.find('ymin').text)xmax = int(bbox.find('xmax').text)ymax = int(bbox.find('ymax').text)boxes.append([xmin, ymin, xmax, ymax])labels.append(label)if self.transform:image = self.transform(image)return image, {'boxes': torch.tensor(boxes, dtype=torch.float32), 'labels': labels}# 数据预处理
transform = transforms.Compose([transforms.ToPILImage(),transforms.Resize((416, 416)),transforms.ToTensor(),
])# 加载数据集
train_dataset = RoadPuddleDataset(image_dir='images/train', annotation_dir='annotations/train', transform=transform)
test_dataset = RoadPuddleDataset(image_dir='images/test', annotation_dir='annotations/test', transform=transform)train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True, num_workers=4)
test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False, num_workers=4)
注意事项
- 数据格式:确保图像文件和标注文件的命名一致,以便正确匹配。
- 硬件要求:建议使用GPU进行训练和推理,以加快处理速度。如果没有足够的计算资源,可以考虑使用云服务提供商的GPU实例。
- 超参数调整:根据实际情况调整网络架构、学习率、批次大小等超参数,以获得更好的性能。
应用场景
- 智能交通系统:在智能交通监控系统中,自动检测和识别道路上的积水区域,提供实时警报。
- 城市排水管理:帮助城市管理部门及时发现和处理积水问题,提高城市排水系统的效率。
- 自动驾驶:在自动驾驶系统中,检测积水区域以避免车辆进入危险区域,提高行驶安全性。
通过上述步骤,你可以轻松地使用这个道路积水检测数据集,并将其应用于深度学习模型的训练和测试。希望这个项目能帮助你更好地理解和应用目标检测技术
相关文章:
道路积水检测数据集 1450张 路面积水 带分割 voc yolo
道路积水检测数据集 1450张 路面积水 带分割 voc yolo 分类名: (图片张数, 标注个数) puddle:(1468,1994) 总数:(1468,1994) 总类(nc): 1类 道路积水检测数据集介绍 项目名称 道路积水检测数据集 项目概述 本数据集包含1450张带有标注的图像&#x…...
上门安装维修系统小程序开发详解及源码示例
随着智能家居和设备的普及,消费者对上门安装和维修服务的需求日益增加。为了满足这一市场需求,开发一款上门安装维修系统小程序成为了一种有效的解决方案。本文将详细介绍上门安装维修系统小程序的开发过程,并提供一个简单的源码示例…...
03_23 种设计模式之《原型模式》
文章目录 一、原型模式基础知识原型模式的结构应用场景 实例拷贝构造函数被调用场景如下:典型的应用场景: 一、原型模式基础知识 原型模式是一种创建型设计模式,其功能为复制一个运行时的对象,包括对象各个成员当前的值。而代码又…...
【秋招笔试】10.08华为荣耀秋招(已改编)-三语言题解
🍭 大家好这里是 春秋招笔试突围,一起备战大厂笔试 💻 ACM金牌团队🏅️ | 多次AK大厂笔试 | 大厂实习经历 ✨ 本系列打算持续跟新 春秋招笔试题 👏 感谢大家的订阅➕ 和 喜欢💗 和 手里的小花花🌸 ✨ 笔试合集传送们 -> 🧷春秋招笔试合集 本次的三题全部上线…...
基于ResNet50模型的船型识别与分类系统研究
关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝,拥有2篇国家级人工智能发明专利。 社区特色…...
一个为分布式环境设计的任务调度与重试平台,高灵活高效率,系统安全便捷,分布式重试杀器!(附源码)
背景 近日挖掘到一款名为“SnailJob”的分布式重试开源项目,它旨在解决微服务架构中常见的重试问题。在微服务大行其道的今天,我们经常需要对某个数据请求进行多次尝试。然而,当遇到网络不稳定、外部服务更新或下游服务负载过高等情况时,请求…...
攻防世界(CTF)~Misc-Banmabanma
题目介绍 附件下载后得到一张图片类,似一只斑马,仔细观看发现像条形码 用条形码在线阅读查看一下 条形码在线识别 flag{TENSHINE}...
获取淘宝直播间弹幕数据的技术探索实践方法
在数字时代,直播已成为电商营销的重要渠道之一,而弹幕作为直播互动的核心元素,蕴含着丰富的用户行为和情感数据。本文将详细介绍如何获取淘宝直播间弹幕数据的技术方法和步骤,同时分析不同工具和方法的优缺点,并提供实…...
Python 卸载所有的包
Python 卸载所有的包 引言正文 引言 可能很少有小伙伴会遇到这个问题,当我们错误安装了一些包后,由于包之间有相互关联,导致一些已经安装的包无法使用,而由于我们已经安装了很多包,它们的名字我们并不完全知道&#x…...
JWT(JSON Web Token)、Token、Session和Cookie
JWT(JSON Web Token)、Token、Session和Cookie都是Web开发中常用的概念,它们各自在不同的场景下发挥着重要的作用。以下是对这四个概念的详细解释和比较: 一、JWT(JSON Web Token) 定义:JWT是一…...
国内知名人工智能AI大模型专家培训讲师唐兴通讲授AI办公应用人工智能在营销与销售过程中如何应用数字化赋能
AI如火如荼,对商业与社会影响很大。 目前企业广泛应用主要是在营销、销售方向,提升办公效率等方向。 从喧嚣的AI导入营销与销售初步阶段,那么当下,领先的组织与个人现在正在做什么呢? 如何让人性注入冷冰冰的AI&…...
Android常用C++特性之std::swap
声明:本文内容生成自ChatGPT,目的是为方便大家了解学习作为引用到作者的其他文章中。 std::swap 是 C 标准库中提供的一个函数,位于 <utility> 头文件中。它用于交换两个变量的值。 语法: #include <utility>std::s…...
MongoDB数据库详解:特点、架构与应用场景
目录 MongoDB 简介MongoDB 的核心特点 2.1 面向文档的存储2.2 动态架构2.3 水平扩展能力2.4 强大的查询能力 MongoDB 的架构设计 3.1 存储引擎3.2 集群架构3.3 副本集(Replica Set)3.4 分片(Sharding) MongoDB 常见应用场景 4.1 …...
【C语言刷力扣】1678.设计Goal解析器
题目: 解题思路: 遍历分析每一个字符,对不同情况分别讨论。 若是字符 G ,则 res 中添加字符 G若是字符 ( ,则再分别讨论。 若下一个字符是 ), 则在 res 末尾添加字符 o若下一个字符…...
RK3568平台开发系列讲解(I2C篇)i2c 总线驱动介绍
🚀返回专栏总目录 文章目录 一、i2c 总线定义二、i2c 总线注册三、i2c 设备和 i2c 驱动匹配规则沉淀、分享、成长,让自己和他人都能有所收获!😄 i2c 总线驱动由芯片厂商提供,如果我们使用 ST 官方提供的 Linux 内核, i2c 总线驱动已经保存在内核中,并且默认情况下已经…...
xilinx中bufgce
在Xilinx的FPGA设计中,BUFGCE是一种重要的全局时钟缓冲器原语,它基于BUFGCTRL并以一些引脚连接逻辑高电位和低电位。以下是对BUFGCE的详细解析: 一、BUFGCE的功能与特点 功能:BUFGCE是带有时钟使能信号的全局缓冲器。它接收一个时…...
雷池+frp 批量设置proxy_protocol实现真实IP透传
需求 内网部署safeline,通过frp让外网访问内部web网站服务,让safeline记录真实外网攻击IP safeline 跟 frp都部署在同一台服务器:192.168.2.103 frp client 配置 frpc只需要在https上添加transport.proxyProtocolVersion "v2"即…...
DAY27||回溯算法基础 | 77.组合| 216.组合总和Ⅲ | 17.电话号码的字母组合
回溯算法基础知识 一种效率不高的暴力搜索法。本质是穷举。有些问题能穷举出来就不错了。 回溯算法解决的问题有: 组合问题:N个数里面按一定规则找出k个数的集合切割问题:一个字符串按一定规则有几种切割方式子集问题:一个N个数…...
js基础速成12-正则表达式
正则表达式 正则表达式(Regular Expression)或 RegExp 是一种小型编程语言,有助于在数据中查找模式。RegExp 可以用来检查某种模式是否存在于不同的数据类型中。在 JavaScript 中使用 RegExp,可以使用 RegExp 构造函数࿰…...
使用Selenium自动化测试定位iframe以及修改img标签的display属性值
在使用 Selenium 进行自动化测试时,处理 iframe 是一个常见问题。当页面中出现 iframe 时,需要先切换到该 iframe 内部,才能正常定位和操作其中的元素。以下是处理 iframe 的步骤和示例代码: 步骤 切换到 iframe:使用…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)
macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 🍺 最新版brew安装慢到怀疑人生?别怕,教你轻松起飞! 最近Homebrew更新至最新版,每次执行 brew 命令时都会自动从官方地址 https://formulae.…...
淘宝扭蛋机小程序系统开发:打造互动性强的购物平台
淘宝扭蛋机小程序系统的开发,旨在打造一个互动性强的购物平台,让用户在购物的同时,能够享受到更多的乐趣和惊喜。 淘宝扭蛋机小程序系统拥有丰富的互动功能。用户可以通过虚拟摇杆操作扭蛋机,实现旋转、抽拉等动作,增…...
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement
Cilium动手实验室: 精通之旅---13.Cilium LoadBalancer IPAM and L2 Service Announcement 1. LAB环境2. L2公告策略2.1 部署Death Star2.2 访问服务2.3 部署L2公告策略2.4 服务宣告 3. 可视化 ARP 流量3.1 部署新服务3.2 准备可视化3.3 再次请求 4. 自动IPAM4.1 IPAM Pool4.2 …...
五子棋测试用例
一.项目背景 1.1 项目简介 传统棋类文化的推广 五子棋是一种古老的棋类游戏,有着深厚的文化底蕴。通过将五子棋制作成网页游戏,可以让更多的人了解和接触到这一传统棋类文化。无论是国内还是国外的玩家,都可以通过网页五子棋感受到东方棋类…...
SDU棋界精灵——硬件程序ESP32实现opus编码
一、 音频处理框架 该项目基于Espressif的音频处理框架构建,核心组件包括 ESP-ADF 和 ESP-SR,以下是完整的音频处理框架实现细节: 1.核心组件 (1) 音频前端处理 (AFE - Audio Front-End) main/components/audio_pipeline/afe_processor.c功能: 声学回声…...

