Leecode热题100-56.合并区间
以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。
示例 1:
输入:intervals = [[1,3],[2,6],[8,10],[15,18]] 输出:[[1,6],[8,10],[15,18]] 解释:区间 [1,3] 和 [2,6] 重叠, 将它们合并为 [1,6].
示例 2:
输入:intervals = [[1,4],[4,5]] 输出:[[1,5]] 解释:区间 [1,4] 和 [4,5] 可被视为重叠区间。
提示:
1 <= intervals.length <= 104intervals[i].length == 20 <= starti <= endi <= 104
很简单的题目,关键看怎么想,直接上代码了,不懂私信或者留言
class Solution {/**本题的思路是:先把原来的数组按照第一维从小到大排序,如果第一维相同按照第二位从大到小排序(第二维无所谓,从小到大也许)这样就能保证类似(1,2),(1,6)这样的区间排完序之后是(1,6)(1,2),这样遍历完第一个区间之后获得的end是6,第二个区间被第一个区间包围可以忽略然后如果下个区间是(7,10)就把第一个进行结算,如果下个是(3,8)就把end扩展到8并试图继续扩展*/public int[][] merge(int[][] intervals) {/**如果只有一个区间就没啥好合并的了,直接返回即可 */if(intervals.length == 1) {return intervals;}/**大于1个区间先排序,排序规则:按照第一维(区间开始)从小到大进行排序,如果第一维相同按照第二位从大到小排序 */Arrays.sort(intervals, (a,b)->a[0] != b[0]? a[0] - b[0] : b[1] - a[1]);/**把第一个区间的开头和结尾定义为start和end,每遍历完一个区间再给这两个赋值*/int start = intervals[0][0];int end = intervals[0][1];/**为减少空间浪费,我这里复用intervals作为结果数组,但是大概率是装不满的,所以需要定义一个validLen表示结果的有效长度,目前还没有*/int validLen = 0;for(int i = 1; i < intervals.length; i++) {/**如果这个区间被之前的区间覆盖了,就跳过 */if(intervals[i][0] >= start && intervals[i][1] <= end) {continue;}/**intervals[i][0]肯定是大于start的,如果intervals[i][1]小于等于end,那前面的if就返回了,所以这里intervals[i][1]肯定比end大,可以扩展end*/if(intervals[i][0] <= end) {end = intervals[i][1];} else {/**如果不重合就结算前一个区间并开始下个区间 */intervals[validLen][0] = start;intervals[validLen ++][1] = end; /**开始下个区间,重新计算start和end */start = intervals[i][0];end = intervals[i][1];}}/**对于最后一个区间,假设它和上个区间重合则它只是扩展了上个区间,还没结算如果它和上个区间不重合,则开始了一个新的区间,也没有结算这两种情况都需要把最后一个区间结算一下 */intervals[validLen][0] = start;intervals[validLen++][1] = end;/**拷贝有效的长度返回 */return Arrays.copyOf(intervals, validLen);}
}

相关文章:
Leecode热题100-56.合并区间
以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间 。 示例 1: 输入:intervals [[1,3…...
安全帽未佩戴预警系统 劳保防护用品穿戴监测系统 YOLO
在建筑、矿山、电力等高危行业中,工人面临着各种潜在的危险,如高空坠物、物体打击等。安全帽能够有效地分散和吸收冲击力,大大降低头部受伤的严重程度。一旦工人未正确佩戴安全帽,在遭遇危险时,头部将直接暴露在危险之…...
【python机器学习】线性回归 拟合 欠拟合与过拟合 以及波士顿房价预估案例
文章目录 线性回归之波士顿房价预测案例 欠拟合与过拟合线性回归API 介绍:波士顿房价预测数据属性:机器学习代码实现 拟合 过拟合 欠拟合 模拟 及处理方法(正则化处理)导包定义函数表示欠拟合定义函数表示拟合定义函数表示过拟合 正则化处理过拟合L1正则化L2正则化 线性回归之波…...
IT招聘乱象的全面分析
近年来,IT行业的招聘要求似乎越来越苛刻,甚至有些不切实际。许多企业在招聘时,不仅要求前端工程师具备UI设计能力,还希望后端工程师精通K8S服务器运维,更有甚至希望研发经理掌握所有前后端框架和最新开发技术。这种招聘…...
一入递归深似海,算法之美无止境
最近在刷leetcode hot100,在写二叉树中最大路径和的时候,看到了一个佬对递归的理解,深受启发,感觉自己对于递归的题又行了!!! 这里给大家分享一下(建立大家先去尝试一下这道题再来看 124. 二叉树中的最大路径和 二叉树中的 路径 被定义为一条节点序列,序列中每…...
进程的状态的理解(概念+Linux)
文章目录 进程的状态并行和并发物理和逻辑 时间片进程具有独立性等待的本质运行阻塞标记挂起等待 Linux下的进程状态(一)运行状态(R - running)(二)睡眠状态(S - sleeping)ÿ…...
Apache Linkis + OceanBase:如何提升数据分析效率
计算中间件 Apache Linkis 构建了一个计算中间件层,以实现上层应用程序和底层数据引擎之间的连接、治理和编排。目前,已经支持通过数据源的功能,实现用户通过Linkis 对接并使用 OceanBase数据库。 本文详细阐述了在 Apache Linkis v1.3.2中&a…...
Day01-postgresql数据库基础入门培训
Day01-postgresql数据库基础入门培训 1、PostgresQL数据库简介2、PostgreSQL行业生态应用3、PostgreSQL版本发展与特性4、PostgreSQL体系结构介绍5、PostgreSQL与MySQL的区别6、PostgreSQL与Oracle、MySQL的对比 1、PostgresQL数据库简介 PostgreSQL【简称:PG】是加…...
打卡第四天 P1081 [NOIP2012 提高组] 开车旅行
今天是我打卡第四天,做个省选/NOI−题吧(#^.^#) 原题链接:[NOIP2012 提高组] 开车旅行 - 洛谷 题目描述 输入格式 输出格式 输入输出样例 输入 #1 4 2 3 1 4 3 4 1 3 2 3 3 3 4 3 输出 #1 1 1 1 2 0 0 0 0 0 输入 #2 10 4 5 6 1 …...
Jenkins Pipline流水线
提到 CI 工具,首先想到的就是“CI 界”的大佬--]enkjns,虽然在云原生爆发的年代,蹦出来了很多云原生的 CI 工具,但是都不足以撼动 Jenkins 的地位。在企业中对于持续集成、持续部署的需求非常多,并且也会经常有-些比较复杂的需求,此时新生的 CI 工具不足以支撑这些很…...
鸿蒙harmonyos next flutter混合开发之开发FFI plugin
创建FFI plugin summation,默认创建的FFI plugin是求两个数的和 flutter create --templateplugin_ffi summation --platformsandroid,ios,ohos 创建my_application flutter create --org com.example my_application 在my_application项目中文件pubspec.yaml引…...
oracle数据库安装和配置
Oracle数据库安装 一、安装前的准备 系统要求: 硬件:内存至少1GB(推荐2GB以上),硬盘至少10GB的可用空间,CPU至少2核心。 操作系统:支持Oracle版本的Windows(如Windows 10或更高版本…...
猫玖破密啦
题目: 终究还是猫哥:3d5a3a0cfff7fb2e29194c0b7a89f284ff19a8 玖离:收到消息Oh,what_is_the_flag 玖离:7468655f666c61675f69735f666c13556d2cf2faec1e2d0f330b7dcceea1c62cb2 终究还是猫哥:收到消息************************************ 已…...
SpringBoot框架:服装生产管理的现代化工具
摘 要 本协力服装厂服装生产管理系统设计目标是实现协力服装厂服装生产的信息化管理,提高管理效率,使得协力服装厂服装生产管理作规范化、科学化、高效化。 本文重点阐述了协力服装厂服装生产管理系统的开发过程,以实际运用为开发背景&#…...
Android Preference的使用以及解析
简单使用 values.arrays.xml <?xml version"1.0" encoding"utf-8"?> <resources><string-array name"list_entries"><item>Option 1</item><item>Option 2</item><item>Option 3</item&…...
HCIP——GRE和MGRE
目录 VPN GRE GRE环境的搭建 GRE的报文结构 GRE封装和解封装报文的过程 GRE配置编辑 R1 R2 GRE实验编辑 MGRE 原理 MGRE的配置 R1 R2 R3 R4 查看映射表 抓包 MGRE环境下的RIP网络 综合练习编辑 VPN 说到GRE,我们先来说个大…...
微信小程序——音乐播放器
一、界面设计 播放页面: 显示当前播放歌曲的封面图片、歌曲名称、歌手名称。有播放 / 暂停按钮、上一首、下一首按钮。进度条显示播放进度,可以拖动进度条调整播放位置。音量调节滑块。 歌曲列表页面: 展示歌曲列表,包括歌曲名称、…...
OceanBase 4.x 部署实践:如何从单机扩展至分布式部署
OceanBase 4.x 版本支持2种部署模式:单机部署与分布式部署,同时支持从单机平滑扩展至分布式架构。这样,可以有效解决小型业务向大型业务转型时面临的扩展难题,降低了机器资源的成本。 以下将详述如何通过命令行,实现集…...
大数据新视界 --大数据大厂之TeZ 大数据计算框架实战:高效处理大规模数据
💖💖💖亲爱的朋友们,热烈欢迎你们来到 青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而 我的…...
docker详解介绍+基础操作 (三)
1.docker 存储引擎 Overlay: 一种Union FS文件系统,Linux 内核3.18后支持 Overlay2:Overlay的升级版,docker的默认存储引擎,需要磁盘分区支持d-type功能,因此需要系统磁盘的额外支持。 关于 d-type 传送…...
python打卡day49
知识点回顾: 通道注意力模块复习空间注意力模块CBAM的定义 作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程 import torch import torch.nn as nn# 定义通道注意力 class ChannelAttention(nn.Module):def __init__(self,…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
无法与IP建立连接,未能下载VSCode服务器
如题,在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈,发现是VSCode版本自动更新惹的祸!!! 在VSCode的帮助->关于这里发现前几天VSCode自动更新了,我的版本号变成了1.100.3 才导致了远程连接出…...
DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
