辅助编程coding的两种工具:Github Copilot、Cursor
目录
- Cursor
- 简介
- 下载地址:
- 使用技巧:
- CHAT:
- example 1:
- 注意:
- example 2:
- Github Copilot
- 官网
- 简介
- 以插件方式安装
- pycharm
- 自动写代码
- example 1:写一个mysql取数据的类
- example 2:写一个多重共线性检测的类
- 总结
Cursor
简介
Cursor is an editor made for programming with AI. It’s early days, but right now Cursor can help you with a few things…
- Write: Generate 10-100 lines of code with an AI that’s smarter than Copilot
- Diff: Ask the AI to edit a block of code, see only proposed changes
- Chat: ChatGPT-style interface that understands your current file
- And more: ask to fix lint errors, generate tests/comments on hover, etc
下载地址:
https://www.cursor.so/

使用技巧:
https://twitter.com/amanrsanger
CHAT:
example 1:





注意:
对于上面最后一张图的中的代码,如果直接在IDE里面运行是不会报错的,但是有一句代码
vif["VIF"] = [variance_inflation_factor(df.values, i) for i in range(df.shape[1]-1)]
是不符合多重共线性分析或者VIF的数学原理的。因为VIF是对自变量间线性关系的分析,如果直接调用OLS;如果把OLS里面的目标函数换成非线性方程,就是表达的非线性关系。而上面的代码是把df.values都传入了variance_inflation_factor函数,包括了自变量和因变量,因此是不符合多重共线性分析原理的。
所以应改成:
import pandas as pddata = {'x1': [1, 2, 3, 4, 5],'x2': [2, 4, 6, 8, 10],'x3': [3, 6, 9, 12, 15],'y': [2, 4, 6, 8, 10]}df = pd.DataFrame(data)from statsmodels.stats.outliers_influence import variance_inflation_factor# Get the VIF for each feature
vif = pd.DataFrame()
vif["feature"] = df.columns[:-1]
# vif["VIF"] = [variance_inflation_factor(df.values, i) for i in range(df.shape[1]-1)]
vif["VIF"] = [variance_inflation_factor(df.values[:, :-1], i) for i in range(df.shape[1]-1)]# Print the results
print(vif)
原理解释:
def variance_inflation_factor(exog, exog_idx):"""Variance inflation factor, VIF, for one exogenous variableThe variance inflation factor is a measure for the increase of thevariance of the parameter estimates if an additional variable, given byexog_idx is added to the linear regression. It is a measure formulticollinearity of the design matrix, exog.One recommendation is that if VIF is greater than 5, then the explanatoryvariable given by exog_idx is highly collinear with the other explanatoryvariables, and the parameter estimates will have large standard errorsbecause of this.Parameters----------exog : {ndarray, DataFrame}design matrix with all explanatory variables, as for example used inregressionexog_idx : intindex of the exogenous variable in the columns of exogReturns-------floatvariance inflation factorNotes-----This function does not save the auxiliary regression.See Also--------xxx : class for regression diagnostics TODO: does not exist yetReferences----------https://en.wikipedia.org/wiki/Variance_inflation_factor"""k_vars = exog.shape[1]exog = np.asarray(exog)x_i = exog[:, exog_idx]mask = np.arange(k_vars) != exog_idxx_noti = exog[:, mask]r_squared_i = OLS(x_i, x_noti).fit().rsquaredvif = 1. / (1. - r_squared_i)return vif
example 2:


GPT-4太大写不了,给出的是调GPT-2的示例代码。
Github Copilot
官网
https://github.com/features/copilot
简介
- GitHub Copilot uses the OpenAI Codex to suggest code and entire functions in real-time, right from your editor.
- Trained on billions of lines of code, GitHub Copilot turns natural language prompts into coding suggestions across dozens of languages.
- Don’t fly solo
Developers all over the world use GitHub Copilot to code faster, focus on business logic over boilerplate, and do what matters most: building great software. - Focus on solving bigger problems
Spend less time creating boilerplate and repetitive code patterns, and more time on what matters: building great software. Write a comment describing the logic you want and GitHub Copilot will immediately suggest code to implement the solution. - Get AI-based suggestions, just for you
GitHub Copilot shares recommendations based on the project’s context and style conventions. Quickly cycle through lines of code, complete function suggestions, and decide which to accept, reject, or edit. - Code confidently in unfamiliar territory
Whether you’re working in a new language or framework, or just learning to code, GitHub Copilot can help you find your way. Tackle a bug, or learn how to use a new framework without spending most of your time spelunking through the docs or searching the web.

目前有个人版、商业版和教育版三种,教育版里面学生账户比教师账户的免费功能更多,只需要一个学校邮箱和一卡通就可以认证学生账户或者教师账户,还是很方便。
以插件方式安装
pycharm



自动写代码
以下代码除了第一行注释都是copilot自动补全的
example 1:写一个mysql取数据的类
# 写一个mysql取数据的类
import pymysql
class Mysql:def __init__(self,host,user,password,database,port=3306):self.host = hostself.user = userself.password = passwordself.database = databaseself.port = portself.conn = pymysql.connect(host=self.host,user=self.user,password=self.password,database=self.database,port=self.port)self.cursor = self.conn.cursor()def fetchone(self,sql):self.cursor.execute(sql)return self.cursor.fetchone()def fetchall(self,sql):self.cursor.execute(sql)return self.cursor.fetchall()def close(self):self.cursor.close()self.conn.close()def commit(self):self.conn.commit()def rollback(self):self.conn.rollback()def execute(self,sql):self.cursor.execute(sql)self.commit()def executemany(self,sql,values):self.cursor.executemany(sql,values)self.commit()
example 2:写一个多重共线性检测的类
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
class Multicollinearity:def __init__(self,df):self.df = dfdef get_vif(self):vif = pd.DataFrame()vif["VIF Factor"] = [self.get_vif_score(i) for i in range(self.df.shape[1])]vif["features"] = self.df.columnsreturn vifdef get_vif_score(self,i):y = self.df.iloc[:,i]x = self.df.drop(self.df.columns[i],axis=1)lr = LinearRegression()lr.fit(x,y)r2 = r2_score(y,lr.predict(x))return 1/(1-r2)
总结
用工具自动写代码的时候,最好要用实际例子或实际数据检查一下,就算没有报错,对于数值计算最好也要debug跑一遍看它生成的代码是否符合你的描述或者数学原理。具体原因见上文的注意。
相关文章:
辅助编程coding的两种工具:Github Copilot、Cursor
目录Cursor简介下载地址:使用技巧:CHAT:example 1:注意:example 2:Github Copilot官网简介以插件方式安装pycharm自动写代码example 1:写一个mysql取数据的类example 2:写一个多重共线性检测的类…...
MySQL5.7安装教程
1.鼠标右击【MySQL5.7】压缩包(win11及以上系统需先点击“显示更多选项”)选择【解压到 MySQL5.7】 2.打开解压后的文件夹,双击运行【mysql-installer-community-5.7.27.0】 3.勾选【I accept the license terms】,点击【Next】 4…...
ML@sklearn@ML流程Part3@AutomaticParameterSearches
文章目录Automatic parameter searchesdemomodel_selection::Hyper-parameter optimizersGridSearchCVegRandomizedSearchCVegNoteRandomForestRegressorMSEpipeline交叉验证🎈egL1L2正则Next stepsUser Guide vs TutorialAutomatic parameter searches Automatic p…...
Ubuntu22安装OpenJDK
目录 一、是否自带JDK 二、 删除旧JDK(如果自带JDK满足需求就直接使用了) 三、下载OpenJDK 四、新建/home/user/java/文件夹 五、 设置环境变量 六、查看完成 附:完整版连接: 一、是否自带JDK java -version 二、 删除旧…...
【数据库管理】②实例管理及数据库启动关闭
1. 实例和参数文件 1.1 instance 用于管理和访问 database. instance 在启动阶段读取初始化参数文件(init parameter files). 1.2 init parameter files [rootoracle-db-19c ~]# su - oracle [oracleoracle-db-19c ~]$ [oracleoracle-db-19c ~]$ cd $ORACLE_HOME/dbs [oracl…...
【2023】Kubernetes之Pod与容器状态关系
目录简单创建一个podPod运行阶段:容器运行阶段简单创建一个pod apiVersion: v1 kind: pod metadata: name: nginx-pod spec:containers:- name: nginximages: nginx:1.20以上代码表示创建一个名为nginx-pod的pod资源对象。 Pod运行阶段: Pod创建后&am…...
LabVIEW阿尔泰PCIE 5654 例程与相关资料
LabVIEW阿尔泰PCIE 5654 例程与相关资料 阿尔泰PCIE 5654多功能采集卡,具有500/250Ksps、32/16路模拟量输入;100Ksps,16位,4/2/0路同步电压模拟量输出;8路DIO ;8路PFI;1路32位多功能计数器。PC…...
spark2.4.4有哪些主要的bug
Issue Navigator - ASF JIRA -...
信息学奥赛一本通 1347:【例4-8】格子游戏
【题目链接】 ybt 1347:【例4-8】格子游戏 【题目考点】 1. 并查集:判断无向图是否有环 【解题思路】 该题为判断无向图是否有环。可以使用并查集来完成。 学习并查集时,每个元素都由一个整数来表示。而该问题中每个元素是一个坐标点&a…...
acwing3417. 砝码称重
acwing3417. 砝码称重算法 1: DFS算法2 : DP算法 1: DFS /*** 数据范围 对于 50%的评测用例,1≤N≤15. 对于所有评测用例,1≤N≤100,N 个砝码总重不超过 1e5. */ /* 算法 1: DFS 思路 : 对于每个砝码,有放在左边,放在右边,和不放三种选择,使…...
生成式 AI:百度“文心一言”对标 ChatGPT?什么技术趋势促使 ChatGPT 火爆全网?
文章目录前言一、生成式 AI 的发展和现状1.1、什么是生成式 AI?1.2、生成式 AI 的发展趋势1.3、AI 生成内容的业务场景和分类二、生成式 AI 从分析领域到创作领域2.1、 降低内容创作门槛,增加 UGC 用户群体2.2、提升创作及反馈效率,铺垫线上实…...
PCL 非线性最小二乘法拟合圆柱
文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 这里通过非线性最小二乘的方法来实现圆柱体的拟合,具体的计算过程如下所述: 图中, p p p为输入数据的点位置,求解的参数为柱体的轴向向量 a...
【设计模式】迪米特法则
文章目录一、迪米特法则定义二、迪米特法则分析三、迪米特法则实例一、迪米特法则定义 迪米特法则(Law of Demeter, LoD):一个软件实体应当尽可能少地与其他实体发生相互作用。 二、迪米特法则分析 如果一个系统符合迪米特法则,那么当其中某一个模块发…...
CSS3笔试题精讲1
Q1 BFC专题 防止父元素高度坍塌 4种方案 父元素的高度都是由内部未浮动子元素的高度撑起的。 如果子元素浮动起来,就不占用普通文档流的位置。父元素高度就会失去支撑,也称为高度坍塌。 即使有部分元素留在普通文档流布局中支撑着父元素,如果浮动 起来的元素高度高于留下的…...
交叉编译用于移植的Qt库
前言 如果在Ubuntu上使用qt开发可移植到周立功开发板的应用程序,需要在Ubuntu上交叉编译用于移植的Qt库,具体做法如下: 1、下载源码 源码qt-everywhere-opensource-src-5.9.6.tar.xz拷贝到ubuntu自建的software文件下 2、解压 点击提取到此处 3、安装配置 运行脚本文…...
泰凌微TLSR8258 zigbee开发环境搭建
目录必备软件工具抓包分析辅助工具软件开发包PC 辅助控制软件 (ZGC)必备软件工具 下载地址:http://wiki.telink-semi.cn/ • 集成开发环境: TLSR8 Chips: Telink IDE for TC32 TLSR9 Chips: Telink RDS IDE for RISC-V • 下载调试工具: Telink Burning and Debugg…...
C#实现商品信息的显示异常处理
实验四:C#实现商品信息的显示异常处理 任务要求: 在进销存管理系统中,商品的库存信息有很多种类,比如商品型号、商品名称、商品库存量等。在面向对象编程中,这些商品的信息可以存储到属性中,然后当需要使…...
细数N个获取天气信息的免费 API ,附超多免费可用API 推荐(三)
前言 市面上有 N 多个查询天气信息的软件、小程序以及网页入口,基本都是通过调用天气查询 API 去实现的。 今天整理了一下多种场景的天气预报API 接口分享给大家,有需要赶紧收藏起来。 天气预报查询 天气预报查询支持全国以及全球多个城市的天气查询…...
20230404英语学习
今日单词 decade n.十年 allocate vt.分配,分派,把…拨给 compress v.压缩;缩短;浓缩 regenerate v.(使)复兴,(使)振兴;(使)再生 …...
冒泡排序 快排(hoare递归)
今天要讲一个是冒泡排序,进一个是快排,首先是冒泡排序,我相信大家接触的第一个排序并且比较有用的算法就是冒泡排序了,冒泡排序是算法里面比较简单的一种,所以我们先看看一下冒泡排序 还是个前面一样,我们…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
C++ Visual Studio 2017厂商给的源码没有.sln文件 易兆微芯片下载工具加开机动画下载。
1.先用Visual Studio 2017打开Yichip YC31xx loader.vcxproj,再用Visual Studio 2022打开。再保侟就有.sln文件了。 易兆微芯片下载工具加开机动画下载 ExtraDownloadFile1Info.\logo.bin|0|0|10D2000|0 MFC应用兼容CMD 在BOOL CYichipYC31xxloaderDlg::OnIni…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
MySQL 主从同步异常处理
阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示ÿ…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
麒麟系统使用-进行.NET开发
文章目录 前言一、搭建dotnet环境1.获取相关资源2.配置dotnet 二、使用dotnet三、其他说明总结 前言 麒麟系统的内核是基于linux的,如果需要进行.NET开发,则需要安装特定的应用。由于NET Framework 是仅适用于 Windows 版本的 .NET,所以要进…...
