当前位置: 首页 > news >正文

【题目解析】蓝桥杯23国赛C++中高级组 - 斗鱼养殖场

【题目解析】蓝桥杯23国赛C++中高级组 - 斗鱼养殖场

题目链接跳转:点击跳转

前置知识:

  1. 了解过基本的动态规划。
  2. 熟练掌握二进制的位运算。

题解思路

这是一道典型的状压动态规划问题。设 d p i , j dp_{i, j} dpi,j 表示遍历到第 i i i 行的时候,当前行以 j ( b a s e 2 ) j_{(base2)} j(base2) 的形式排列乌龟可以构成的方案数。

对于每一行的方案,我们可以用一个二进制来表示。例如二进制数字 10100 10100 10100,表示有一个横向长度为 5 5 5 的场地中,第 1 , 3 1, 3 1,3 号位置分别放置了一只小乌龟。因此,每一种摆放状态都可以用一个二进制数字来表示。我们也可以通过遍历的方式来遍历出二进制的每一种摆放状态。

首先,我们预处理出横排所有放置乌龟的合法情况。根据题意,两个乌龟不能相邻放置,因此在二进制中,不能有两个 1 1 1 相邻。如何预处理出这种情况呢?我们可以使用位运算的方法:

如果存在一个二进制数字有两个 1 1 1 相邻,那么如果我们对这个数字 x x x 进行位运算操作 (x << 1) & x 的结果或 (x >> 1) & x 的结果必定大于等于 1 1 1。我们通过把这种情况排除在外。同时,我们还需要注意有些格子中不能放置乌龟。这一步也可以通过二进制的方法预处理掉,如果网箱在第 i i i 一个格子中不能放置乌龟,那么在枚举所有方案数的时候直接忽略掉第 i i i 位为 1 1 1 的情况即可。

接下来如何保证上下两行的乌龟不冲突?假如上一行的摆放状态是 y y y,当前行的摆放状态为 j j j,如果 i & j 的结果大于等于 1 1 1,也可以证明有两个数字 1 1 1 在同一位置上。因此我们也需要把这种情况排除在外。

综上所述,我们可以得出状态转移方程: d p i , j = d p i , j + d p i − 1 , k dp_{i, j} = dp_{i, j} + dp_{i-1, k} dpi,j=dpi,j+dpi1,k。其中, j j j k k k 表示所有横排合法的方案。答案就是 A N S = ∑ j = 0 2 M − 1 d p N , j \mathtt{ANS} = \sum_{j=0}^{2^M-1}{dp_{N, j}} ANS=j=02M1dpN,j

状态的初始化也很简单,另 d p 0 , 0 = 1 dp_{0, 0} = 1 dp0,0=1​,表示一只乌龟都不放有一种摆放方案。

时间复杂度

通过观察上述代码,在枚举所有状态和转移状态的时候有三层循环,分别是枚举当前行、枚举当前行的合法摆放情况以及枚举上一行的摆放情况。因此总时间复杂度约为 O ( n × 2 M × 2 M ) = O ( n × 2 M 2 ) = O ( n × 4 M ) O(n \times 2^M \times 2^M) = O(n \times 2^{M^2}) = O(n \times 4^M) O(n×2M×2M)=O(n×2M2)=O(n×4M)。但由于合法的摆放数量远远少于 2 M 2^M 2M,因此实际情况下程序运行的速度会快许多。

代码实现

本题的代码实现如下。在输出的时候需要减一,因为不放置也是一种合法情况,根据题目要求需要把这一合法情况排除。

#include <iostream>
using namespace std;const int MOD = 1e9+7;
int n, m, ans;
int arr[505][505];
// 所有横排合法的情况。
int terrain[505];
int ok[1050], cnt;
int dp[505][1050];int main(){cin >> n >> m;for (int i=1; i<=n; i++){for (int j=1; j<=m; j++){cin >> arr[i][j];}}// 预处理非法地形。for (int i=1; i<=n; i++){for (int j=1; j<=m; j++){terrain[i] = (terrain[i] << 1) + !arr[i][j];}}// 预处理出所有横排的合法情况。for (int i=0; i<(1<<m); i++){if (((i<<1)|(i>>1)) & i) continue;ok[++cnt] = i;}dp[0][1] = 1;// 枚举。for (int i=1; i<=n; i++){for (int s1=1; s1<=cnt; s1++){  // 枚举当前行。if (ok[s1] & terrain[i]) continue;for (int s2=1; s2<=cnt; s2++){  // 枚举上一行。if (ok[s2] & terrain[i-1]) continue;if (ok[s1] & ok[s2]) continue;dp[i][s1] = (dp[i][s1] + dp[i-1][s2]) % MOD;}}}// 统计答案。int ans = 0;for (int i=1; i<=cnt; i++)ans = (ans + dp[n][i]) % MOD;cout << ans - 1 << endl;return 0;
}

本题的 Python 代码如下,Python 可以通过本题的所有测试点:

MOD = int(1e9 + 7)
n, m, ans = 0, 0, 0
arr = [[0] * 505 for _ in range(505)]
terrain = [0] * 505
ok = [0] * 1050
dp = [[0] * 1050 for _ in range(505)]
cnt = 0def main():global n, m, cnt, ans# 输入 n 和 mn, m = map(int, input().split())# 输入 arr 数组for i in range(1, n + 1):arr[i][1:m + 1] = map(int, input().split())# 预处理非法地形for i in range(1, n + 1):for j in range(1, m + 1):terrain[i] = (terrain[i] << 1) + (1 - arr[i][j])# 预处理出所有横排的合法情况for i in range(1 << m):if ((i << 1) | (i >> 1)) & i:continuecnt += 1ok[cnt] = idp[0][1] = 1# 枚举for i in range(1, n + 1):for s1 in range(1, cnt + 1):  # 枚举当前行if ok[s1] & terrain[i]:continuefor s2 in range(1, cnt + 1):  # 枚举上一行if ok[s2] & terrain[i - 1]:continueif ok[s1] & ok[s2]:continuedp[i][s1] = (dp[i][s1] + dp[i - 1][s2]) % MOD# 统计答案ans = 0for i in range(1, cnt + 1):ans = (ans + dp[n][i]) % MODprint(ans - 1)if __name__ == "__main__":main()

再提供一个暴力解法用于对拍:

#include <iostream>
using namespace std;const int MOD = 1e9+7;
int n, m, ans;
int arr[505][505];
int dx[] = {0, 1, -1, 0};
int dy[] = {1, 0, 0, -1};// 深度优先搜索 Brute Force
void dfs(int x, int y){if (x > n) {ans += 1;ans %= MOD;return ;}if (y > m){dfs(x+1, 1);return ;}if (arr[x][y] == 0){dfs(x, y+1);return ;}// 不放鱼dfs(x, y+1);// 放鱼for (int i=0; i<4; i++){int cx = x + dx[i];int cy = y + dy[i];if (cx < 1 || cy < 1 || cx > n || cy > m) continue;if (arr[cx][cy] == 2) return ;}arr[x][y] = 2;dfs(x, y+1);arr[x][y] = 1;return ;
}int main(){cin >> n >> m;for (int i=1; i<=n; i++){for (int j=1; j<=m; j++){cin >> arr[i][j];}}// dfs 暴力dfs(1, 1);cout << ans-1 << endl;return 0;
}

相关文章:

【题目解析】蓝桥杯23国赛C++中高级组 - 斗鱼养殖场

【题目解析】蓝桥杯23国赛C中高级组 - 斗鱼养殖场 题目链接跳转&#xff1a;点击跳转 前置知识&#xff1a; 了解过基本的动态规划。熟练掌握二进制的位运算。 题解思路 这是一道典型的状压动态规划问题。设 d p i , j dp_{i, j} dpi,j​ 表示遍历到第 i i i 行的时候&a…...

JavaScript可视化:探索顶尖的图表库

JavaScript可视化&#xff1a;探索顶尖的图表库 在这个被数据驱动的时代&#xff0c;你有没有想过&#xff0c;数据本身是如何变得有意义的&#xff1f;答案就是数据可视化。通过图表和图形&#xff0c;我们不仅可以看到数据&#xff0c;还可以感受到它&#xff0c;从而做出明…...

谷歌AI大模型Gemini API快速入门及LangChain调用视频教程

1. 谷歌Gemini API KEY获取及AI Studio使用 要使用谷歌Gemini API&#xff0c;首先需要获取API密钥。以下是获取API密钥的步骤&#xff1a; 访问Google AI Studio&#xff1a; 打开浏览器&#xff0c;访问Google AI Studio。使用Google账号登录&#xff0c;若没有账号&#xf…...

进入容器:掌控Docker的世界

进入容器:掌控Docker的世界 在这个快速发展的技术时代,你是否曾被Docker的庞大生态所吸引?那么,有没有想过在这个容器化的世界里,如何快速高效地“进入”这些隐藏在虚拟墙后的容器呢?容器就如同魔法箱,装载着应用与服务,而你,通过探索这些容器,能够更好地管理、排除…...

初始Linux(二)基础命令

前言&#xff1a; 之前那一篇我们已经介绍了一部分的基础命令&#xff0c;当然那只不过是九牛一毛&#xff0c;本篇我们继续介绍一些比较重要且需要掌握的基础命令。 mv命令&#xff1a; 其实这个命令有两个功能&#xff0c;一个是移动&#xff08;剪切&#xff09;文件&#…...

STM32 OLED

文章目录 前言一、OLED是什么&#xff1f;二、使用步骤1.复制 OLED.C .H文件1.1 遇到问题 2.统一风格3.主函数引用头文件3.1 oled.h 提供了什么函数 4.介绍显示一个字符的函数5. 显示十进制函数的讲解 三、使用注意事项3.1 配置符合自己的引脚3.2 花屏总结 前言 提示&#xff…...

伦敦金实时行情决策辅助!

在伦敦金实时交易的过程中&#xff0c;投资者主要依赖技术分析来辅助自己的投资决策。与基本面分析不同&#xff0c;技术分析侧重于研究金价的走势和市场行为&#xff0c;通过图表和技术指标来预测未来的市场走势。常用的技术分析方法包括&#xff1a; 趋势线和支撑阻力位&…...

​Leetcode 746. 使用最小花费爬楼梯​ 入门dp C++实现

问题&#xff1a;Leetcode 746. 使用最小花费爬楼梯 给你一个整数数组 cost &#xff0c;其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用&#xff0c;即可选择向上爬一个或者两个台阶。 你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。 请你…...

路由协议常见知识点

路由协议是网络通信的基础&#xff0c;主要负责在网络中传递数据包&#xff0c;并确保它们从源节点传递到目标节点。本文将介绍一些常见的路由协议知识点&#xff0c;包括路由协议的分类、特性、配置与管理以及常见问题。 一、路由协议的分类 距离矢量路由协议&#xff1a; R…...

多模态大语言模型(MLLM)-InstructBlip深度解读

前言 InstructBlip可以理解为Blip2的升级版&#xff0c;重点加强了图文对话的能力。 模型结构和Blip2没差别&#xff0c;主要在数据集收集、数据集配比、指令微调等方面下文章。 创新点 数据集收集&#xff1a; 将26个公开数据集转换为指令微调格式&#xff0c;并将它们归类…...

网页前端开发之Javascript入门篇(7/9):字符串

Javascript字符串 什么是字符串&#xff1f; 答&#xff1a;其概念跟 Python教程 介绍的一样&#xff0c;只是语法上有所变化。 在 Javascript 中&#xff0c;一个字符串变量可以看做是其内置类String的一个实例&#xff08;Javascript会自动包装&#xff09;。 因此它拥有一…...

双登股份再战IPO:数据打架,实控人杨善基千万元股权激励儿子

撰稿|行星 来源|贝多财经 近日&#xff0c;双登集团股份有限公司&#xff08;下称“双登股份”&#xff09;递交招股书&#xff0c;准备在港交所主板上市&#xff0c;中金公司、建银国际、华泰国际为其联席保荐人。 贝多财经了解到&#xff0c;这并非双登股份首次向资本市场…...

4.Python 函数(函数的定义、函数的传入参数、函数的返回值、None 类型、函数说明文档、变量的作用域)

一、函数快速入门 1、函数概述 函数是组织好的&#xff0c;可重复使用的&#xff0c;用来实现特定功能的代码段 name "Hello World" name_length len(name)print(f"{name} 的长度为 {name_length}") # Hello World 的长度为 11len() 是Python 内置的函…...

【JavaEE】——文件IO

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;认识文件 1&#xff1a;文件的概念 2&#xff1a;文件的结构 3&#xff1a;文件路径…...

Python的pandas库基本操作(数据分析)

一、安装&#xff0c;导入 1、安装 使用包管理器安装&#xff1a; pip3 install pandas 2、导入 import pandas as pd as是为了方便引用起的别名 二、DateFrame 在Pandas库中&#xff0c;DataFrame 是一种非常重要的数据结构&#xff0c;它提供了一种灵活的方式来存储和…...

软件测试(平铺版本)

目录 黑盒测试&#xff1a; 定义: 示例&#xff1a;登录功能的黑盒测试 适合使用黑盒测试的情况 几种常见的黑盒测试方法&#xff1a; 1. 等价类划分&#xff08;Equivalence Partitioning&#xff09; 2. 边界值分析&#xff08;Boundary Value Analysis&#xff09; …...

树控件QTreeWidget

树控件跟表格控件类似&#xff0c;也可以有多列&#xff0c;也可以只有1列&#xff0c;可以有多行&#xff0c;只不过每一行都是一个QTreeWidgetItem&#xff0c;每一行都是一个可以展开的树 常用属性和方法 显示和隐藏标题栏 树控件只有水平标题栏 //获取和设置标题栏的显…...

Python酷库之旅-第三方库Pandas(139)

目录 一、用法精讲 626、pandas.plotting.scatter_matrix方法 626-1、语法 626-2、参数 626-3、功能 626-4、返回值 626-5、说明 626-6、用法 626-6-1、数据准备 626-6-2、代码示例 626-6-3、结果输出 627、pandas.plotting.table方法 627-1、语法 627-2、参数 …...

昇思学习打卡营学习记录:CycleGAN壁画修复

按照提示&#xff0c;运行实训代码 进入实训平台&#xff1a;https://xihe.mindspore.cn/projects 选择“jupyter 在线编辑器” 启动“Ascend开发环境” &#xff1a;Ascend开发环境需要申请&#xff0c;大家可以申请试试看 启动开发环境后&#xff0c;在左边的文件夹中&am…...

南京大学《软件分析》李越, 谭添——1. 导论

导论 主要概念: soundcompletePL领域概述 动手学习 本节无 文章目录 导论1. PL(Programming Language) 程序设计语言1.1 程序设计语言的三大研究方向1.2 与静态分析相关方向的介绍与对比静态程序分析动态软件测试形式化(formal)语义验证(verification) 2. 静态分析:2.1莱斯…...

label-studio的使用教程(导入本地路径)

文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

shell脚本--常见案例

1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件&#xff1a; 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

【Linux】C语言执行shell指令

在C语言中执行Shell指令 在C语言中&#xff0c;有几种方法可以执行Shell指令&#xff1a; 1. 使用system()函数 这是最简单的方法&#xff0c;包含在stdlib.h头文件中&#xff1a; #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...

【第二十一章 SDIO接口(SDIO)】

第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险

C#入门系列【类的基本概念】&#xff1a;开启编程世界的奇妙冒险 嘿&#xff0c;各位编程小白探险家&#xff01;欢迎来到 C# 的奇幻大陆&#xff01;今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类&#xff01;别害怕&#xff0c;跟着我&#xff0c;保准让你轻松搞…...

MySQL体系架构解析(三):MySQL目录与启动配置全解析

MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录&#xff0c;这个目录下存放着许多可执行文件。与其他系统的可执行文件类似&#xff0c;这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中&#xff0c;用…...