C++——模拟实现list
1.初步实现结点和链表
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>class list//list的框架本质是封装+运算符重载{typedef list_node<T> Node;public:void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}private:Node* _head;size_t _size;
//不写_size变量的话,想获取size的大小,从头遍历链表,时间复杂度是O(N)};
}
2.push_back
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>class list//list的框架本质是封装+运算符重载{typedef list_node<T> Node;public:void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;_size = 0;}list(){empty_init();}void push_back(const T& x){Node* tail = _head->_prev;Node* newnode = new Node(x);//调用构造函数tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;}private:Node* _head;size_t _size;};
}
3.初步实现迭代器
将迭代器封装为类来实现其功能
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>struct __list_iterator//一般前加__就说明这是内部的实现{typedef list_node<T> Node;typedef __list_iterator<T> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++()//不是连续的物理空间,++不能到下一个位置{_node = _node->_next;return *this;}T& operator*(){return _node->_data;}bool operator!=(const self& s){return (_node != s._node);}};template<class T>class list//list的框架本质是封装+运算符重载{typedef list_node<T> Node;public:typedef __list_iterator<T> iterator;iterator begin(){//return iterator(_head->_next);return _head->_next;}iterator end(){//return iterator(_head);return _head;}void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}void push_back(const T& x){Node* tail = _head->_prev;Node* newnode = new Node(x);//调用构造函数tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;}private:Node* _head;size_t _size;};void test_list1(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);// 封装,屏蔽了底层差异和实现细节// 提供了统一的访问、修改和遍历方式list<int>::iterator it = lt.begin();while (it != lt.end()){*it += 10;//还可以修改cout << *it << " ";++it;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}
}

4.插入和删除
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>struct __list_iterator//一般前加__就说明这是内部的实现{typedef list_node<T> Node;typedef __list_iterator<T> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++()//不是连续的物理空间,++不能到下一个位置{_node = _node->_next;return *this;}T& operator*(){return _node->_data;}bool operator!=(const self& s){return (_node != s._node);}};template<class T>class list//list的框架本质是封装+运算符重载{typedef list_node<T> Node;public:typedef __list_iterator<T> iterator;void clear()//不清哨兵位的头结点{iterator it = begin();while (it != end()){it = erase(it);}}void push_back(const T& x){insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void pop_front(){erase(begin());}void pop_back(){erase(--end());}//void insert(iterator pos,const T& x)//{// Node* cur = pos._node;// Node* newnode = new Node(x);// Node* prev = cur->_prev;// //prev newnode cur// prev->_next = newnode;// newnode->_prev = prev;// newnode->_next = cur;// cur->_prev = newnode;// //理论上可以认为list的迭代器不存在失效问题//}iterator insert(iterator pos, const T& x){Node* cur = pos._node;Node* newnode = new Node(x);Node* prev = cur->_prev;//prev newnode curprev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;++_size;return iterator(newnode);//指向新插入的元素}//void erase(iterator pos)//{// Node* cur = pos._node;// Node* prev = cur->_prev;// Node* next = cur->_next;// delete cur;// prev->_next = next;// next->_prev = prev;//}iterator erase(iterator pos){Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;delete cur;prev->_next = next;next->_prev = prev;--_size;//erase后的迭代器会失效,所有最好把返回值类型改为iteratorreturn iterator(next);}size_t size(){return _size;}private:Node* _head;size_t _size;};}
5.拷贝构造和赋值
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>struct __list_iterator//一般前加__就说明这是内部的实现{typedef list_node<T> Node;typedef __list_iterator<T> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++()//不是连续的物理空间,++不能到下一个位置{_node = _node->_next;return *this;}T& operator*(){return _node->_data;}bool operator!=(const self& s){return (_node != s._node);}};template<class T>class list//list的框架本质是封装+运算符重载{typedef list_node<T> Node;public:typedef __list_iterator<T> iterator;iterator begin(){//return iterator(_head->_next);return _head->_next;}iterator end(){//return iterator(_head);return _head;}void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;}list(){empty_init();}~list(){clear();delete(_head);_head = nullptr;}//拷贝构造//list(const list<T>& lt)//这里是const迭代器list(list<T>& lt){empty_init();for (auto e : lt){push_back(e);}}传统写法//list<int>& operator=(const list<int>& lt)//{// if (this != <)// {// clear();// for (auto e : lt)// {// push_back(e);// }// }// return *this;//}void swap(list<int>& lt){std::swap(_head, lt._head);std::swap(_size, lt._size);}list<int>& operator=(list<int> lt)//调用拷贝构造{swap(lt);return *this;}private:Node* _head;size_t _size;};}
6.完善迭代器
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>struct __list_iterator//一般前加__就说明这是内部的实现{typedef list_node<T> Node;typedef __list_iterator<T> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++()//不是连续的物理空间,++不能到下一个位置{_node = _node->_next;return *this;}self& operator--(){_node = _node->_prev;return *this;}//自定义类型尽量使用前置++,后置++要返回++之前的值self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}T& operator*(){return _node->_data;}bool operator!=(const self& s){return (_node != s._node);}bool operator==(const self& s){return (_node == s._node);}//迭代器不需要析构函数//它虽然有结点的指针,但是指针是不属于它的,它不能释放//迭代器的拷贝构造和赋值也不需要去实现深拷贝};template<class T>class list{typedef list_node<T> Node;public:private:Node* _head;size_t _size;};}
7.补充:迭代器的->运算符重载
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>struct __list_iterator//一般前加__就说明这是内部的实现{typedef list_node<T> Node;typedef __list_iterator<T> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++()//不是连续的物理空间,++不能到下一个位置{_node = _node->_next;return *this;}T& operator*(){return _node->_data;}bool operator!=(const self& s){return (_node != s._node);}T* operator->(){return &_node->_data;}};template<class T>class list{typedef list_node<T> Node;public:private:Node* _head;size_t _size;};struct AA{AA(int a1 = 0, int a2 = 0):_a1(a1),_a2(a2){}int _a1;int _a2;};void test_list3(){//存一个自定义类型list<AA> lt;lt.push_back(AA(1, 2));lt.push_back(AA(2, 3));lt.push_back(AA(3, 4));list<AA>::iterator it = lt.begin();while (it != lt.end()){//cout << *it << " ";//*it的类型是AA,不支持流插入//一、让AA类支持流插入//二、打印公有成员变量//cout << (*it)._a1 << " " << (*it)._a2 << endl;//三、让AA类支持->//自定义类型不支持运算符,需要重载cout << it->_a1 << " " << it->_a2 << endl;cout << it.operator->()->_a1 << " " << it.operator->()->_a2 << endl;++it;//当数据存储自定义类型时,重载->}//解引用有三种方式:*、[]、->int* p = new int;*p = 1;AA* ptr = new AA;ptr->_a1=1;}}

8.const迭代器

namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};//const迭代器模拟的是指向的内容不能改变,而不是本身不能改变//const迭代器本身可以++template<class T>struct __list_const_iterator//const迭代器是一个单独的类{typedef list_node<T> Node;typedef __list_const_iterator<T> self;Node* _node;__list_const_iterator(Node* node):_node(node){}self& operator++(){_node = _node->_next;return *this;}self& operator--(){_node = _node->_prev;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}const T& operator*() //通过解引用才能修改数据{return _node->_data;//返回的是const别名,不能修改}const T* operator->(){return &_node->_data;}bool operator!=(const self& s){return (_node != s._node);}bool operator==(const self& s){return (_node == s._node);}};template<class T>class list//list的框架本质是封装+运算符重载{typedef list_node<T> Node;public:typedef __list_iterator<T> iterator;typedef __list_const_iterator<T> const_iterator;//单独去支持一个类型:const_iteratorconst_iterator begin() const{//return const_iterator(_head->_next);return _head->_next;}const_iterator end() const{//return const_iterator(_head);return _head;}private:Node* _head;size_t _size;};//测试const迭代器void print_list(const list<int>& lt)
//容器通常不支持流插入,所以要写个print函数{list<int>::const_iterator it = lt.begin();while (it != lt.end()){//*it = 100;//不可修改cout << *it << " ";it++;}cout << endl;}void test_list4(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);print_list(lt);}
}
9.改善为模板
当前代码的实现太过冗余,iterator类和const_iterator类的代码实现高度重合

namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x)//这里是拷贝构造,_prev(nullptr),_next(nullptr){}};//T T& T*
//T const T& const T*
template<class T,class Ref,class Ptr>
struct __list_iterator
{typedef list_node<T> Node;typedef __list_iterator<T,Ref,Ptr> self;Node* _node;__list_iterator(Node* node):_node(node){}self& operator++()//不是连续的物理空间,++不能到下一个位置{_node = _node->_next;return *this;}self& operator--(){_node = _node->_prev;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}Ref operator*()//从泛型的角度来说,这里返回值类型是什么是不知道的{return _node->_data;}Ptr operator->(){return &_node->_data;}bool operator!=(const self& s){return (_node != s._node);}bool operator==(const self& s){return (_node == s._node);}//所以迭代器到底如何实现,是根据容器的底层结构来决定的
};template<class T>
class list//list的框架本质是封装+运算符重载
{typedef list_node<T> Node;public:typedef __list_iterator<T,T&,T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;const_iterator begin() const{//return const_iterator(_head->_next);return _head->_next;}const_iterator end() const{//return const_iterator(_head);return _head;}iterator begin(){//return iterator(_head->_next);return _head->_next;}iterator end(){//return iterator(_head);return _head;}void empty_init(){_head = new Node;_head->_next = _head;_head->_prev = _head;_size = 0;}list(){empty_init();}~list(){clear();delete(_head);_head = nullptr;}//拷贝构造list(const list<T>& lt)//这里是const迭代器{empty_init();for (auto e : lt){push_back(e);}}void swap(list<int>& lt){std::swap(_head, lt._head);std::swap(_size, lt._size);}list<int>& operator=(list<int> lt)//调用拷贝构造{swap(lt);return *this;}void clear()//不清哨兵位的头结点{iterator it = begin();while (it != end()){it = erase(it);}}void push_back(const T& x){insert(end(), x);}void push_front(const T& x){insert(begin(), x);}void pop_front(){erase(begin());}void pop_back(){erase(--end());}iterator insert(iterator pos, const T& x){Node* cur = pos._node;Node* newnode = new Node(x);Node* prev = cur->_prev;//prev newnode curprev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;++_size;return iterator(newnode);//指向新插入的元素}iterator erase(iterator pos){Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;delete cur;prev->_next = next;next->_prev = prev;--_size;//erase后的迭代器会失效,所有最好把返回值类型改为iteratorreturn iterator(next);}size_t size(){return _size;}private:Node* _head;size_t _size;
};//测试const迭代器void print_list(const list<int>& lt){list<int>::const_iterator it = lt.begin();while (it != lt.end()){//*it = 100;//不可修改cout << *it << " ";it++;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}void test_list4(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);print_list(lt);}
}
10.关于typename
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>void print_list(const list<T>& lt)//之前的print只支持int类型{list<T>::const_iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}void test_list4(){list<string> lt1;lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");//这里会不会涉及深层次的深拷贝问题?//之前的vector容器就涉及到了深层次的浅拷贝问题//它的主要原因是因为扩容时使用了memcpy//list不存在扩容的事情,也就不涉及这个问题print_list(lt1);}
}
但事实上,这样修改以后是编译不通过的。

这就涉及到另一个知识点,在日常使用中,模板命名时,使用class和使用typename是等价的
template<class T>
template<typename T>
但此时的场景下,就要使用typename了。
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<typename T>void print_list(const list<T>& lt)//之前的print只支持int类型{typename list<T>::const_iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}void test_list4(){list<string> lt1;lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");print_list(lt1);}
}
typename list<T>::const_iterator it = lt.begin();
当模板是未实例化的类模板时,如list<T>
编译器不能去它里面查找,它里面带有许多不可确定的东西
编译器在编译阶段、没有实例化时,只会对这里进行初步的检查
所以编译器无法判断list<T>::const_iterator是内嵌类型,还是静态成员变量
所以这里要加上typename,凡是这种类模板中取类型都要加
前面加一个typename就是告诉编译器,这里是一个类型
要等list<T>实例化了,再去类里面去取
模板里面取东西都要加typename,使得编译器初步检查时先通过
然后实例化后,再去类中取这个类型,就知道它具体是什么了
11.再次改善为模板
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<typename T>void print_list(const list<T>& lt){typename list<T>::const_iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}cout << endl;for (auto e : lt){cout << e << " ";}cout << endl;}void test_list4(){list<string> lt1;lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");print_list(lt1);vector<string> v;v.push_back("111111111111");v.push_back("111111111111");v.push_back("111111111111");v.push_back("111111111111");v.push_back("111111111111");print_list(v);//此时是打印不了的}
}
print_list是专门打印list的,想要打印vector,难道再去写一个逻辑高度重复的print函数吗?
namespace jxy
{template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x = T()):_data(x),_prev(nullptr),_next(nullptr){}};template<typename Container>void print_container(const Container& con)//针对容器的打印{typename Container::const_iterator it = con.begin();while (it != con.end()){cout << *it << " ";it++;}cout << endl;}//模板实现了泛型编程,本质就是本来应该由我们做的事情交给了编译器void test_list4(){list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);lt.push_back(5);print_container(lt);list<string> lt1;lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");lt1.push_back("1111111111111111111111");print_container(lt1);vector<string> v;v.push_back("111111111111");v.push_back("111111111111");v.push_back("111111111111");v.push_back("111111111111");v.push_back("111111111111");print_container(v);}
}
12.总结:对比vector和list
| vector | list | |
| 底层结构 | 动态顺序表,一段连续空间 | 带头结点的双向循环链表 |
| 随机访问 | 支持随机访问,访问某个元素效率O(1),适合sort数据 | 不支持随机访问,访问某个元素效率O(N) |
| 插入和删除 | 任意位置插入和删除效率低,需要搬移元素,时间复杂度为O(N),插入时有可能需要增容,增容:开辟新空间,拷贝元素,释放旧空间,导致效率更低 | 任意位置插入和删除效率高,不需要搬移元素,时间复杂度为O(1) |
| 空间利用率 | 底层为连续空间,不容易造成内存碎片,空间利用率高,CPU高速缓存利用率高 | 底层节点动态开辟,小节点容易造成内存碎片,空间利用率低,缓存利用率低 |
| 迭代器 | 原生态指针 | 对原生态指针(节点指针)进行封装 |
| 迭代器失效 | 在插入元素时,要给所有的迭代器重新赋值,因为插入元素有可能会导致重新扩容,致使原来迭代器失效,删除时,当前迭代器需要重新赋值否则会失效 | 插入元素不会导致迭代器失效,删除元素时,只会导致当前迭代器失效,其他迭代器不受影响 |
| 使用场景 | 需要高效存储,支持随机访问,不关心插入删除效率 | 大量插入和删除操作,不关心随 机访问 |
相关文章:
C++——模拟实现list
1.初步实现结点和链表 namespace jxy {template<class T>struct list_node{T _data;list_node<T>* _prev;list_node<T>* _next;list_node(const T& x T()):_data(x),_prev(nullptr),_next(nullptr){}};template<class T>class list//list的框架本…...
React中useState、useReducer与useRef
useState 详解 useState 是 React 函数组件中用于管理组件状态的 Hook。它提供了一种简洁的方式来在函数组件中添加状态,并在状态改变时触发组件重新渲染。以下是 useState 的详细解析: 一、基本概念 useState 是一个函数,它接收一个初始状…...
ReGCL Rethinking Message Passingin Graph Contrastive Learning
AAAI24 推荐指数: #paper/⭐ 总体说:利用梯度对对比正负样本加权的。个人觉得和与正负样本加权没有区别,读完之后不想做笔记了。...
ubutun安装ffmpeg
安装依赖 sudo apt-get install yasm sudo apt-get install libsdl1.2-dev sudo apt-get install libsdl2-dev 下载安装 tar -zxvf filename.gz ./configure --enable-shared --prefix/usr/local/ffmpeg make -j4 sudo make install 添加路径 路径/usr/local/ffmpeg…...
Vue的基本用法及模板语法
Vue.js使用了基于 HTML 的模板语法,允许开发者声明式地将 DOM 绑定至底层 Vue实例的数据。所有 Vue.js的模板都是合法的 HTML,所以能被遵循规范的浏览器和 HTML 解析器解析。 在底层的实现上,Vue将模板编译成虚拟 DOM 渲染函数。结合响应系…...
Redis数据库与GO完结篇:redis操作总结与GO使用redis
一、redis操作总结 由于写redis命令的时候有提示符,所以下表只给出命令名称 数据类型操作简介字符串GET, SET, MGET, MSET, SETEX,DEL最基本的数据类型,存储任意二进制数据,支持简单操作和原子计数。适合存储重复数据。哈希HSET, HGET, HDE…...
《重生到现代之从零开始的C语言生活》—— 动态内存管理
动态内存分配 我们在开辟内存的时候就是 int a 3;这样 但是这样开的空间大小是固定的,且大小不能调整 但是如果我们用动态内存开辟的话,就可以自己申请和释放空间、 malloc 是C语言提供的一个开辟动态空间的函数 void* malloc (size_t size);//si…...
四、Spring Boot集成Spring Security之登录登出业务逻辑
Spring Boot集成Spring Security之登录登出业务逻辑 一、概要说明二、基于内存的用户名密码1、默认用户名密码2、自定义用户名密码3、为方便测试添加测试接口TestController 三、登录登出重要概念介绍四、登录业务逻辑1、登录业务相关过滤器2、访问业务请求处理流程①、访问业务…...
pipe和pipefd
Linux 中 pipe 的详细介绍 在 Linux 中,pipe 是一个系统调用,用于创建一个管道,这是一种用于进程间通信(IPC)的机制。管道允许两个进程之间进行单向数据传输,通常是一个进程向管道写入数据,而另…...
无人机之飞控仿真技术篇
一、无人机飞控仿真技术的定义 无人机飞控仿真技术主要是指飞行控制系统仿真,它是以无人机的运动情况为研究对象,面向对象的复杂系统仿真。通过该技术,可以模拟无人机的飞行过程,评估飞行控制系统的性能,优化飞行参数&…...
Tetra Pak利乐触摸屏维修beijer北尔触摸屏维修E1151
TetraPak利乐包装机触摸显示屏维修,北尔全系列型号触摸屏修理 维修注意事项: 上电前,应检查负载是否接上或是否正确; 测量电压时,确认档位是否在电压档。要确认仪器仪表的量程应大于测试点的电压; 更换电…...
Python_网络编程(IP 端口 协议)
网络编程: 互联网时代,现在基本上所有的程序都是网络程序,很少有单机版的程序了。网络编程就是如何在程序中实现两台计算机的通信。Python语言中,提供了大量的内置模块和第三方模块用于支持各种网络访问,而且Python语言…...
Adobe Acrobat提示“3D数据解析错误”
原因:在使用Adobe Acrobat打开3D PDF时,因当前Adobe Acrobat的配置存在错误,所以无法打开 解决方法:重新生成配置 首先到达下面的路径C:\Users\你的用户名\AppData\Local\Adobe\Acrobat 下面为我的路径内容 若该路径下存在文件…...
红帽7—Mysql路由部署
MySQL Router 是一个对应用程序透明的InnoDB Cluster连接路由服务,提供负载均衡、应用连接故障转移和客户端路 由。 利用路由器的连接路由特性,用户可以编写应用程序来连接到路由器,并令路由器使用相应的路由策略 来处理连接,使其…...
LLM4Rec最新工作: 字节发布用于序列推荐的分层大模型HLLM
前几个月 Meta HSTU 点燃各大厂商对 LLM4Rec 的热情,一时间,探索推荐领域的 Scaling Law、实现推荐的 ChatGPT 时刻、取代传统推荐模型等一系列话题让人兴奋,然而理想有多丰满,现实就有多骨感,尚未有业界公开真正复刻 …...
怎么高效对接SaaS平台数据?
SaaS平台数据对接是指将一个或多个SaaS平台中的数据集成到其他应用或平台中的过程。在当前的数字化时代,企业越来越倾向于使用SaaS平台来管理他们的业务和数据。然而,这些数据通常散布在不同的SaaS平台中,这对于企业数据的整合和分析来说可能…...
Spark算子使用-Map,FlatMap,Filter,diatinct,groupBy,sortBy
目录 Map算子使用 FlatMap算子使用 Filter算子使用-数据过滤 Distinct算子使用-数据去重 groupBy算子使用-数据分组 sortBy算子使用-数据排序 Map算子使用 # map算子主要使用长场景,一个转化rdd中每个元素的数据类型,拼接rdd中的元素数据…...
CSS响应式布局
CSS 响应式布局也称自适应布局,是 Ethan Marcotte 在 2010 年 5 月份提出的一个概念,简单来讲就是一个网站能够兼容多个不同的终端(设备),而不是为每个终端做一个特定的版本。这个概念是为解决移动端浏览网页而诞生的。…...
AI大模型书籍丨掌握 LLM 和 RAG 技术,这本大模型小鸟书值得一看!
本指南旨在帮助数据科学家、机器学习工程师和机器学习/AI 架构师探索信息检索与 LLMs 的集成及其相互增强。特别聚焦于 LLM 和检索增强生成(RAG)技术在信息检索中的应用,通过引入外部数据库与 LLMs 的结合,提高检索系统的性能。 …...
Mysql和Oracle使用差异和主观感受
这两种常用的关系型数据库有何差异? 支持和社区 MySQL:有一个活跃的开源社区,用户可以获取大量的文档和支持。 Oracle:提供了专业的技术支持,但通常需要额外的费用。 易用性 MySQL:通常被认为是更易于学…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
听写流程自动化实践,轻量级教育辅助
随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...
Unity UGUI Button事件流程
场景结构 测试代码 public class TestBtn : MonoBehaviour {void Start(){var btn GetComponent<Button>();btn.onClick.AddListener(OnClick);}private void OnClick(){Debug.Log("666");}}当添加事件时 // 实例化一个ButtonClickedEvent的事件 [Formerl…...
xmind转换为markdown
文章目录 解锁思维导图新姿势:将XMind转为结构化Markdown 一、认识Xmind结构二、核心转换流程详解1.解压XMind文件(ZIP处理)2.解析JSON数据结构3:递归转换树形结构4:Markdown层级生成逻辑 三、完整代码 解锁思维导图新…...
从零开始了解数据采集(二十八)——制造业数字孪生
近年来,我国的工业领域正经历一场前所未有的数字化变革,从“双碳目标”到工业互联网平台的推广,国家政策和市场需求共同推动了制造业的升级。在这场变革中,数字孪生技术成为备受关注的关键工具,它不仅让企业“看见”设…...
Python 高级应用10:在python 大型项目中 FastAPI 和 Django 的相互配合
无论是python,或者java 的大型项目中,都会涉及到 自身平台微服务之间的相互调用,以及和第三发平台的 接口对接,那在python 中是怎么实现的呢? 在 Python Web 开发中,FastAPI 和 Django 是两个重要但定位不…...
