当前位置: 首页 > news >正文

Go版数据结构 -【8.4 快速排序】

8.4 快速排序

快速排序是一种分而治之的排序算法。它通过随机选择一个基准元素,将数组分为两部分。

一部分比基准元素小,另一部分比基准元素大,之后对两部分排序。

快速排序以其平均情况下的 O(n log n) 时间复杂度和良好的性能而广泛应用。

本节代码存放目录为 lesson20


概念与原理

快速排序的基本思想

  • 选择基准元素:从数组中选择一个元素作为基准,通常选择第一个元素或最后一个元素,也可以随机选择。

  • 划分数组:将数组中的其他元素与基准元素进行比较,按照小于基准大于基准分成两部分。

  • 递归排序:对基准元素两侧的子数组分别递归地进行快速排序。

  • 合并结果:经过每一轮划分和递归,数组最终变得有序。

总的来说,就是选出一个元素,通过与该基准元素的对比得到两个序列,左边的序列小于基准,右边的序列大于基准。

下一步再分别针对左边右边进行递归的快速排序,最终左边、右边也都是有序的序列。


快速排序的步骤示例

给定如下无序数组,按照从小到大排序:

[5, 3, 8, 4, 2]

通过快速排序的步骤如下:

第一步:选择基准元素- 选择数组最后一个元素 2 作为基准,划分数组。- 比基准小的元素:[](没有元素小于 2)- 比基准大的元素:[5, 3, 8, 4]- 将基准元素 2 放在数组的正确位置,结果:[2, 3, 8, 4, 5]第二步:递归排序- 递归排序左侧数组(空数组,不需要处理)- 递归排序右侧数组 [3, 8, 4, 5]第三步:选择基准元素- 选择 5 作为基准,划分数组。- 比基准小的元素:[3, 4]
- 比基准大的元素:[8]- 将基准元素 5 放在数组的正确位置,结果:[2, 3, 4, 5, 8]第四步:递归快速排序- 递归快速排序左侧数组 [3, 4],选择基准 4,划分为 [3] 和 4- 最终排序结果为 [2, 3, 4, 5, 8]

通过快速排序,数组最终被排序为 [2, 3, 4, 5, 8]


快速排序的时间复杂度

快速排序的时间复杂度取决于基准元素的选择:

  • 最坏情况O(n²),当基准元素总是选择最小或最大值时,导致数组无法被均匀划分。

  • 最好情况O(n log n),当每次划分都将数组均匀地分成两半。

  • 平均情况O(n log n),通常情况下,快速排序的表现非常接近 O(n log n)


Go语言的实现

实现代码如下:

// partition 函数实现数组的划分
func partition(arr []int, low, high int) int {pivot := arr[high] // 选择最后一个元素作为基准i := low - 1       // i 代表已处理的元素区间// 遍历数组,将小于 pivot 的元素移到前面for j := low; j < high; j++ {if arr[j] < pivot {i++arr[i], arr[j] = arr[j], arr[i]}}// 将基准元素放到正确位置arr[i+1], arr[high] = arr[high], arr[i+1]return i + 1 // 返回基准元素的位置
}// quickSort 实现快速排序
func quickSort(arr []int, low, high int) {if low < high {// 划分数组,并获取基准元素的位置pi := partition(arr, low, high)// 递归排序基准左侧和右侧的子数组quickSort(arr, low, pi-1)quickSort(arr, pi+1, high)}
}func main() {arr := []int{5, 3, 8, 4, 2}quickSort(arr, 0, len(arr)-1)fmt.Println("最终排序结果: ", arr)
}

执行结果如下所示:

最终排序结果:  [2 3 4 5 8]

小结

本节我们讲解了快速排序的基本原理、步骤示例和 Go 语言的实现。

关于本节总结如下:

  • 时间复杂度:快速排序的平均时间复杂度为 O(n log n),但最坏情况下会退化为 O(n²)

  • 稳定性:快速排序是不稳定的排序算法。

  • 应用场景:快速排序在处理大规模数据时非常高效,适用于数据量较大且对排序性能要求高的场景。


我的GitHub:https://github.com/swxctx

书籍地址:https://gs.golang.website/

书籍代码:https://github.com/YouCanGolang/GoStructedCode

相关文章:

Go版数据结构 -【8.4 快速排序】

8.4 快速排序 快速排序是一种分而治之的排序算法。它通过随机选择一个基准元素&#xff0c;将数组分为两部分。 一部分比基准元素小&#xff0c;另一部分比基准元素大&#xff0c;之后对两部分排序。 快速排序以其平均情况下的 O(n log n) 时间复杂度和良好的性能而广泛应用…...

达梦DBLINK访问ORACLE配置方法

目录 1、概述 2、测试环境 3、语法简介 4、配置访问DM的DBLINK 5、配置访问ORACLE的DBLINK 5.1 通过OCI配置 5.2 通过ODBC配置 1、概述 本文介绍了达梦DBLINK的配置方法。有3部分内容&#xff0c;1&#xff09;达梦访问到达梦的配置方法&#xff1b;2&#xff09;通过OC…...

基础知识1

目录 1、gcd最大公因数 2、最小公倍数 3、素数问题 ①简单数学求法 ②素数筛 ③线性筛 1、gcd最大公因数 int gcd(int a,int b){return b0?a:gcd(b,a%b);} 做题过程中&#xff0c;如果数据太大&#xff0c;需要边做边对分子分母进行约分 2、最小公倍数 int a,b;scanf(&…...

网页前端开发之Javascript入门篇(9/9):对象

Javascript对象 什么是对象? 答&#xff1a;其概念跟 Python教程 的字典基本相似&#xff0c;虽然存有一些差异&#xff0c;不过对于目前的教程来讲可以忽略。 下面是对象的语法&#xff1a; var aaa {"弓" : "张","木" : "李",&…...

Oracle RAC IPC Send timeout detected问题分析处理

一、报错信息 今天在进行数据库巡检时&#xff0c;在集群节点1发现了IPC相关报错信息&#xff1a; 2024-10-10T10:22:06.84631708:00 IPC Receiver dump detected. Sender instance 2 Receiver pnum 277 ospid 377527 [oraclezxsszpt-sjkfwq1 (PPA6)], pser 124403 2024-10-1…...

QT 实现QMessageBox::about()信息自定义显示

这是我记录Qt学习过程的第四篇心得文章&#xff0c;主要是方便自己编写的应用程序显示“关于信息”&#xff0c;对QMessageBox::about()输入信息进行规范&#xff0c;可以设置应用程序名称&#xff0c;通过定义宏从pro文件获取应用程序版本号&#xff0c;以及编译程序的QT版本、…...

(C++进阶)C++20

目录 一、概述 二、新特性 1. 模块&#xff08;Modules&#xff09;功能 2. 概念&#xff08;Concepts&#xff09;功能 3. 范围&#xff08;Ranges&#xff09;功能 4. 协程&#xff08;Coroutines&#xff09;功能 5. 三路比较运算符&#xff08;Spaceship Operator&a…...

【常用的安装破解版指令】MAC安装破解版软件显示文件损坏时

MAC安装破解版软件显示文件损坏时 复制以下命令粘贴到终端后 sudo xattr -rd com.apple.quarantine 打开Finder&#xff08;访达&#xff09;&#xff0c;点击左侧的 应用程序&#xff0c;将应用拖进终端中&#xff0c;然后按键盘的回车键&#xff08;return&#xff09;&…...

【QT Quick】定时器和线程:定时器Timer

在现代用户界面开发中&#xff0c;动态更新内容、处理定时任务或异步任务是常见的需求&#xff0c;尤其在复杂应用中可能会遇到界面阻塞的问题。在 Qt Quick 中&#xff0c;定时器&#xff08;Timer&#xff09;和多线程是两种主要的解决方案&#xff0c;用于避免这种阻塞现象。…...

【NIO基础】NIO(非阻塞 I/O)和 IO(传统 I/O)的区别,以及 NIO 的三大组件详解

目录 1、NIO 2、NIO 和 IO 的区别 1. 阻塞 vs 非阻塞 2. 一个线程 vs 多个连接 3. 面向流 vs 面向缓冲 4. 多路复用 3、Channel & Buffer (1&#xff09;Channel&#xff1a;双向通道 (2&#xff09;Buffer&#xff1a;缓冲区 (3&#xff09;ByteBuffer&#xff…...

HDLBits中文版,标准参考答案 | 3.1.3 Arithmetic Circuits | 算术电路

关注 望森FPGA 查看更多FPGA资讯 这是望森的第 10 期分享 作者 | 望森 来源 | 望森FPGA 目录 1 Half adder | 半加器 2 Full adder | 全加器 3 3-bit binary adder | 3位二进制加法器 4 Adder | 加法器 5 Signed addition overflow | 有符号数的加法溢出 6 100-bit bi…...

网络编程 websocket

1. HTTP 截至 2024 年&#xff0c;HTTP&#xff08;HyperText Transfer Protocol&#xff09;已经发展到 HTTP/3 版本。 各个版本的简介&#xff1a; HTTP/0.9&#xff08;1991年&#xff09;&#xff1a; 最初的 HTTP 版本&#xff0c;非常简单&#xff0c;仅支持 GET 方法…...

【JDK17 | 5】Java 17 深入剖析:新的随机数生成器 API

引言 在 Java 17 中&#xff0c;新的随机数生成器 API 作为一个重要特性被引入&#xff0c;旨在提供更灵活和高效的随机数生成方案。新的 API 不仅支持多种生成算法&#xff0c;还改善了随机数生成的性能&#xff0c;适应了现代开发的需求。在本篇文章中&#xff0c;我们将深入…...

剪切走的照片:高效恢复与预防策略

一、剪切走的照片现象描述 在日常的数字生活中&#xff0c;照片作为记录生活点滴、工作成果的重要载体&#xff0c;其重要性不言而喻。然而&#xff0c;有时我们可能会遇到一种令人头疼的情况&#xff1a;原本打算通过剪切操作将照片移动到另一个位置&#xff0c;却意外地发现…...

基于XGBoost的结核分枝杆菌的耐药性预测研究【多种机器学习】

1. 绪论 目录 1. 绪论 1.1研究背景及意义 1.2国内外研究现状 1.2.1国内研究现状 1.2.2国外研究现状 1.3研究目的 2. 相关技术概念 2.1结核分枝杆菌的耐药性机制 2.2机器学习与系统发育法相结合 2.3XGBoost和随机森林算法的优势和应用 3. 模型设计 3.1数据准备与预…...

【C++差分数组】3229. 使数组等于目标数组所需的最少操作次数|2066

本文涉及知识点 C差分数组 LeetCode3229. 使数组等于目标数组所需的最少操作次数 给你两个长度相同的正整数数组 nums 和 target。 在一次操作中&#xff0c;你可以选择 nums 的任何子数组&#xff0c;并将该子数组内的每个元素的值增加或减少 1。 返回使 nums 数组变为 tar…...

浅谈PyTorch中的DP和DDP

目录 1. 引言2. PyTorch 数据并行&#xff08;Data Parallel, DP&#xff09;2.1 DP 的优缺点2.2 DP 实现代码示例 3. PyTorch 分布式数据并行&#xff08;Distributed Data Parallel, DDP&#xff09;3.1 DDP 的优缺点3.2 分布式基本概念3.3 DDP 的应用流程3.5 DDP 实现代码示…...

在Windows上利用谷歌浏览器进行视频会议和协作

随着远程工作和在线教育的普及&#xff0c;使用谷歌浏览器在Windows上进行视频会议和协作变得越来越常见。本文将为您提供一个详细的教程&#xff0c;教您如何在Windows上利用谷歌浏览器进行视频会议和协作&#xff0c;同时解决一些常见的问题。&#xff08;本文由https://goog…...

VMware Fusion 13.6.1 发布下载,修复 4 个已知问题

VMware Fusion 13.6.1 发布下载&#xff0c;修复 4 个已知问题 VMware Fusion 13.6.1 for Mac - 领先的免费桌面虚拟化软件 适用于基于 Intel 处理器和搭载 Apple 芯片的 Mac 的桌面虚拟化软件 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-fusion-13/ 查看最新…...

P9751 [CSP-J 2023] 旅游巴士

P 9751 P9751 P9751 部分分思路 题目要求时间必须是 k k k 的非负整数倍&#xff0c;所以想到了升维。这样就变成了一道分层图最短路的题目。用 BFS 算法可以拿到 A i 0 A_i0 Ai​0 的 35 35 35 分。 满分思路 其实部分分的思路已经很接近正解了&#xff0c;想要拿到满…...

华为云AI开发平台ModelArts

华为云ModelArts&#xff1a;重塑AI开发流程的“智能引擎”与“创新加速器”&#xff01; 在人工智能浪潮席卷全球的2025年&#xff0c;企业拥抱AI的意愿空前高涨&#xff0c;但技术门槛高、流程复杂、资源投入巨大的现实&#xff0c;却让许多创新构想止步于实验室。数据科学家…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

HTML前端开发:JavaScript 常用事件详解

作为前端开发的核心&#xff0c;JavaScript 事件是用户与网页交互的基础。以下是常见事件的详细说明和用法示例&#xff1a; 1. onclick - 点击事件 当元素被单击时触发&#xff08;左键点击&#xff09; button.onclick function() {alert("按钮被点击了&#xff01;&…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

Typeerror: cannot read properties of undefined (reading ‘XXX‘)

最近需要在离线机器上运行软件&#xff0c;所以得把软件用docker打包起来&#xff0c;大部分功能都没问题&#xff0c;出了一个奇怪的事情。同样的代码&#xff0c;在本机上用vscode可以运行起来&#xff0c;但是打包之后在docker里出现了问题。使用的是dialog组件&#xff0c;…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...