当前位置: 首页 > news >正文

跨界的胜利:机器学习与神经网络的物理之光

在这里插入图片描述

近日,2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况。这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却将全球范围内对机器学习和神经网络的研究和开发作为了一种能够深刻影响我们生活和未来的突出成果。
机器学习和神经网络凭借其高效、准确和实用的特点,已经广泛应用于生产制造、金融、医疗等众多领域。此次诺贝尔物理学奖的颁发,也引起了全球学术和科研圈的广泛关注和热议。 对于这一评奖结果,你又有何不同的看法?针对这一话题,我们邀请您提出您的见解,畅所欲言。

方向选择:机器学习和神经网络的研究与传统物理学的关系

近年来,科技的进步不断推动着人类社会的发展,而机器学习与神经网络作为人工智能的重要分支,在多个领域内展现出了前所未有的潜力。然而,当2024年诺贝尔物理学奖破天荒地颁发给机器学习与神经网络领域的研究者时,这不仅是一次对科技创新的肯定,更是对跨学科合作和融合的一次重要认可。本文将从机器学习和神经网络与传统物理学之间的关系出发,探讨两者如何相互影响,并共同促进科学的发展。

机器学习与神经网络的物理根源

实际上,机器学习和神经网络的概念最早可以追溯到20世纪40年代末期,那时的科学家们试图通过模拟人脑的工作原理来创建能够自我学习的系统。这一过程涉及到大量关于信息处理、信号传递以及模式识别的知识,这些正是物理学中重要的研究内容。例如,神经网络模型的设计灵感就来自于生物神经元之间的连接方式,这种连接方式可以用数学模型来描述,而这些模型又往往建立在物理学的基本原理之上。

相互促进与共同发展

随着技术的发展,机器学习和神经网络逐渐成为解决复杂问题的有效工具,尤其是在数据分析、图像识别等领域。在物理学研究中,这些技术同样发挥了重要作用。比如,在粒子物理学实验中,面对海量的数据,传统的分析方法往往难以快速准确地提取有用信息。此时,机器学习算法便能大显身手,帮助研究人员高效地筛选数据,发现新的物理现象。另一方面,物理学的理论也为机器学习提供了新的视角和技术手段,促进了该领域的发展。例如,利用统计力学中的概念来优化机器学习模型,提高了模型的泛化能力和计算效率。

未来展望

展望未来,机器学习与神经网络与传统物理学之间的互动将会更加紧密。一方面,随着量子计算等新兴技术的发展,基于物理原理的新一代机器学习算法有望诞生,为人工智能带来革命性的变化。另一方面,物理学作为一门基础科学,将继续为机器学习提供深厚的理论支持,助力其在更多领域内的应用拓展。此外,跨学科的合作也将促进新技术的创新,加速科技成果向实际应用的转化,最终惠及全人类。

总之,2024年诺贝尔物理学奖的颁发不仅是对机器学习与神经网络领域成就的认可,更是一个新时代的开始——一个科学技术交叉融合、共同进步的时代。在这个过程中,每一个领域的进步都将为其他领域的发展注入新的活力,共同推动人类文明向前迈进。

相关文章:

跨界的胜利:机器学习与神经网络的物理之光

近日,2024年诺贝尔物理学奖颁发给了机器学习与神经网络领域的研究者,这是历史上首次出现这样的情况。这项奖项原本只授予对自然现象和物质的物理学研究作出重大贡献的科学家,如今却将全球范围内对机器学习和神经网络的研究和开发作为了一种能…...

容器化技术:Docker的基本概念和使用

在现代软件开发和运维中,容器化技术已经成为一种不可或缺的工具。Docker作为容器化技术的代表,以其轻量级、可移植性和隔离性等特点,赢得了广泛的关注和应用。本文将详细介绍Docker的基本概念和使用方法,帮助读者快速上手Docker容…...

EcoVadis认证内容有哪些?EcoVadis认证申请流程?

EcoVadis认证是一个国际性的可持续发展评估平台,旨在帮助全球企业和供应链评鉴其在环境、社会和治理(ESG)方面的表现。该认证框架由法国的检验、认证和检测机构必维集团(Bureau Veritas)创建,得到了众多跨国…...

Windows 搭建 Gitea

一、准备工作 1. 安装 Git:Gitea 依赖 Git 进行代码管理,所以首先需要确保系统中安装了 Git。 下载地址:https://git-scm.com/downloads/win 2. 安装数据库(可选) 默认情况下,Gitea 使用 SQLite 作为内…...

嵌入式面试——FreeRTOS篇(五) 事件标志组

本篇为:FreeRTOS事件标志组篇 1、事件标志组介绍 答: 事件标志位:用一个位,来表示事件是否发生。 事件标志组是一组事件标志位的合集,可以简单的理解事件标志组,就是一个整数。 2、事件标志组的特点 答&am…...

智能听诊器:宠物健康管理的革命

智能听诊器不仅仅是一个简单的监测工具,它代表了宠物健康管理的一次革命。通过收集和分析宠物的生理数据,智能听诊器能够帮助宠物主人和医生更好地理解宠物的健康需求,从而提供更加个性化的护理方案。 智能听诊器通过高精度的传感器&#xf…...

dfs +剪枝sudoku———poj2676

目录 前言 lowbit函数 数独 suduku 问题描述 输入 输出 问题分析 子网格位置 优化搜索顺序剪枝1 优化搜索顺序剪枝2 可行性剪枝 代码 前言 lowbit函数 这是一个利用二进制位运算取出二进制数最后一位’1‘的函数 数独 数独大家肯定都玩过,…...

机器学习:关联规则:Apriori算法、FP - Growth算法的原理、应用场景及优缺点介绍

一、关联规则算法概述 关联规则挖掘是数据挖掘中的一个重要任务,用于发现数据集中不同项之间的关联关系。 二、Apriori算法 原理 频繁项集生成:Apriori算法基于一个先验原理,即如果一个项集是频繁的,那么它的所有子集也是频繁的…...

从0开始深度学习(7)——线性回归的简洁实现

在从0开始深度学习(5)——线性回归的逐步实现中,我们手动编写了数据构造模块、损失函数模块、优化器等,但是在现代深度学习框架下,这些已经包装好了 本章展示如果利用深度学习框架简洁的实现线性回归 0 导入头文件 im…...

【网络安全 | Java代码审计】华夏ERP(jshERP)v2.3

未经许可,不得转载。 文章目录 技术框架开发环境代码审计权限校验绕过SQL注入Fastjson反序列化命令执行存储型XSS越权/未授权重置密码越权/未授权删除用户信息越权/未授权修改用户信息会话固定安全建议项目地址:https://github.com/jishenghua/jshERP 技术框架 核心框架:Sp…...

Setting the value of ‘*‘ exceeded the quota

H5之localStorage限额报错quota_exceeded the quota-CSDN博客 Uncaught DOMException: Failed to set a named property on Storage: Setting the value of background exceeded the quota. 超出了 localStorage 的最大长度。...

前端页面模块修改成可动态生成数据模块——大部分数据为GPT生成(仅供学习参考)

前端页面模块修改成可动态生成数据模块: 这些案例展示了如何通过Blade模板将前端页面模块变成可动态生成的模板。通过巧妙使用Blade语法、控制结构、CSS/JS分离、组件复用等技巧,可以大大提高代码的灵活性和复用性。在Laravel的Controller中准备好数据并…...

5.错误处理在存储过程中的重要性(5/10)

错误处理在存储过程中的重要性 引言 在数据库编程中,存储过程是一种重要的组件,它允许用户将一系列SQL语句封装成一个单元,以便重用和简化数据库操作。然而,像任何编程任务一样,存储过程中的代码可能会遇到错误或异常…...

【WebGis开发 - Cesium】如何确保Cesium场景加载完毕

目录 引言一、监听场景加载进度1. 基础代码2. 加工代码 二、进一步封装代码1. 已知存在的弊端2. 封装hooks函数 三、使用hooks方法1. 先看下效果2. 如何使用该hooks方法 三、总结 引言 本篇为Cesium开发的一些小技巧。 判断Cesium场景是否加载完毕这件事是非常有意义的。 加载…...

【数据结构】6道经典链表面试题

目录 1.返回倒数第K个节点【链接】 ​代码实现 2.链表的回文结构【链接】 代码实现 3.相交链表【链接】 代码实现 4.判断链表中是否有环【链接】 代码实现 常见问题解析 5.寻找环的入口点【链接】 代码实现1 ​代码实现2 6.随机链表的复制【链接】 代码实现 1.…...

等保测评1.0到2.0的演变发展

中国等保测评的演变 作为中国强化网络安全监管制度的重要组成部分,信息安全等级保护测评不是一个新概念,可以追溯到1994年和2007年发布的多项管理规则(通常称为等保测评 1.0规则),根据这些规则,网络运营商…...

yum 源配置

在/etc/yum.repo.d目录下 格式: [repository_name] nameRepository description baseurlhttp://repository_url enabled1 gpgcheck0 gpgkeyfile:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-7 其中: [repository_name]:源的标识名称,…...

通过AI技术克服自动化测试难点(上)

本文我们一起分析一下AI技术如何解决现有的自动化测试工具的不足和我们衍生出来的新的测试需求。 首先我们一起看一下计算机视觉的发展历史,在上世纪70年代,处于技术萌芽期,由字符的识别技术慢慢进行演化,发展到现在,人…...

等保测评:如何建立有效的网络安全监测系统

等保测评中的网络安全监测系统建立 在建立等保测评中的网络安全监测系统时,应遵循以下步骤和策略: 确定安全等级和分类:首先,需要根据信息系统的安全性要求、资产的重要性和风险程度等因素,确定网络系统的安全等级&…...

yjs12——pandas缺失值的处理

1.缺失值的表示 正常来说,pandas缺失值是“nan”表示,但是有且文件可能自己改成了相应的别的符号 2.如何将缺失值符号改成nan xxx.replace(to_replace"...",valuenp.nan) 3.判断是否有缺失值 1.pd.notnull(xxx)————如果有缺失,…...

装饰模式(Decorator Pattern)重构java邮件发奖系统实战

前言 现在我们有个如下的需求,设计一个邮件发奖的小系统, 需求 1.数据验证 → 2. 敏感信息加密 → 3. 日志记录 → 4. 实际发送邮件 装饰器模式(Decorator Pattern)允许向一个现有的对象添加新的功能,同时又不改变其…...

应用升级/灾备测试时使用guarantee 闪回点迅速回退

1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址:pdf 英文是纯手打的!论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误,若有发现欢迎评论指正!文章偏向于笔记,谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

mac 安装homebrew (nvm 及git)

mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用&#xff1a; 方法一&#xff1a;使用 Homebrew 安装 Git&#xff08;推荐&#xff09; 步骤如下&#xff1a;打开终端&#xff08;Terminal.app&#xff09; 1.安装 Homebrew…...

MySQL 部分重点知识篇

一、数据库对象 1. 主键 定义 &#xff1a;主键是用于唯一标识表中每一行记录的字段或字段组合。它具有唯一性和非空性特点。 作用 &#xff1a;确保数据的完整性&#xff0c;便于数据的查询和管理。 示例 &#xff1a;在学生信息表中&#xff0c;学号可以作为主键&#xff…...

MacOS下Homebrew国内镜像加速指南(2025最新国内镜像加速)

macos brew国内镜像加速方法 brew install 加速formula.jws.json下载慢加速 &#x1f37a; 最新版brew安装慢到怀疑人生&#xff1f;别怕&#xff0c;教你轻松起飞&#xff01; 最近Homebrew更新至最新版&#xff0c;每次执行 brew 命令时都会自动从官方地址 https://formulae.…...