实用篇—Navicat复制多条INSERT语句,去除ID列执行
在数据库管理中,常常需要将数据从一个表复制到另一个表。使用 Navicat 等工具可以方便地导出多条 INSERT 语句,但有时我们不需要某些列(如 ID 列)。本文将介绍如何在 Navicat 中复制多条 INSERT 语句,并去除 ID 列以便顺利执行。
步骤一:在 Navicat 中复制数据
- 选择表:在 Navicat 中,找到需要复制数据的表。
- 导出数据:右键点击表名,选择“导出数据”选项,接着选择“SQL 文件”。
- 选择导出选项:在导出设置中,确保选择“导出为 INSERT 语句”。
步骤二:打开 SQL 文件
将导出的 SQL 文件打开,可以使用任何文本编辑器,推荐使用 IntelliJ IDEA 或 Notepad++,因为它们支持正则表达式查找和替换功能。
步骤三:使用正则表达式去除 ID 列
1. 打开查找和替换窗口
在文本编辑器中,按下 Ctrl + R(Windows/Linux)或 Cmd + R(Mac)打开查找和替换窗口。
2. 启用正则表达式
确保选中“正则表达式”选项,以便使用正则表达式进行查找和替换。
3. 输入查找模式(替换 id 列)
在“查找”框中输入以下内容后点Replace ALL:
`id`,
4. 输入查找模式
在“查找”框中输入以下正则表达式:
VALUES \((\d+),
这个表达式用于匹配 VALUES ( 后面跟着的数字(即 ID 列的值),并捕获它。
5. 输入替换模式
在“替换”框中输入:
VALUES (
这样就会选中 ID 列的值。

6. 执行替换
点击“Replace ALL”来完成操作。此时,所有的 INSERT 语句将不再包含 ID 列。
下面是原始SQL,供大家练习测试
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (1, 'value1', 'data1');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (2, 'value2', 'data2');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (3, 'value3', 'data3');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (4, 'value4', 'data4');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (5, 'value5', 'data5');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (6, 'value6', 'data6');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (7, 'value7', 'data7');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (8, 'value8', 'data8');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (9, 'value9', 'data9');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (10, 'value10', 'data10');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (11, 'value11', 'data11');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (12, 'value12', 'data12');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (13, 'value13', 'data13');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (14, 'value14', 'data14');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (15, 'value15', 'data15');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (16, 'value16', 'data16');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (17, 'value17', 'data17');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (18, 'value18', 'data18');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (19, 'value19', 'data19');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (20, 'value20', 'data20');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (21, 'value21', 'data21');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (22, 'value22', 'data22');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (23, 'value23', 'data23');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (24, 'value24', 'data24');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (25, 'value25', 'data25');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (26, 'value26', 'data26');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (27, 'value27', 'data27');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (28, 'value28', 'data28');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (29, 'value29', 'data29');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (30, 'value30', 'data30');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (31, 'value31', 'data31');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (32, 'value32', 'data32');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (33, 'value33', 'data33');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (34, 'value34', 'data34');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (35, 'value35', 'data35');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (36, 'value36', 'data36');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (37, 'value37', 'data37');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (38, 'value38', 'data38');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (39, 'value39', 'data39');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (40, 'value40', 'data40');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (41, 'value41', 'data41');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (42, 'value42', 'data42');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (43, 'value43', 'data43');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (44, 'value44', 'data44');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (45, 'value45', 'data45');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (46, 'value46', 'data46');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (47, 'value47', 'data47');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (48, 'value48', 'data48');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (49, 'value49', 'data49');
INSERT INTO `example_db`.`example_table` (`column1`, `column2`) VALUES (50, 'value50', 'data50');

相关文章:
实用篇—Navicat复制多条INSERT语句,去除ID列执行
在数据库管理中,常常需要将数据从一个表复制到另一个表。使用 Navicat 等工具可以方便地导出多条 INSERT 语句,但有时我们不需要某些列(如 ID 列)。本文将介绍如何在 Navicat 中复制多条 INSERT 语句,并去除 ID 列以便…...
pytorch中张量的有关操作
pytorch中张量的有关操作 创建张量torch.tensor(data): 从数据创建张量torch.zeros(size): 创建元素全为0的张量torch.ones(size): 创建元素全为1的张量torch.empty(size): 创建未初始化的张量torch.randn(size): 创建服从标准正态分布的张量torch.arange(start, end, step): 创…...
Windows多线程编程 互斥量和临界区使用
Windows 多线程编程允许程序同时运行多个线程,提高程序的并发性和执行效率。多线程编程中的核心概念包括线程的创建、同步、调度、数据共享和竞争条件等。本文详细介绍了 Windows 多线程编程的关键技术点,并解释如何使用线程同步机制来保证线程安全。 1…...
Java中集合类型的转换
在Java编程中,集合框架(Collections Framework)提供了一套用于存储和处理对象集合的接口和类。由于集合框架的灵活性和强大功能,我们经常需要在不同的集合类型之间进行转换。本文将介绍Java中常见的集合类型转换方法,包…...
汽车售后TPMS浅谈
汽车售后中的TPMS,即轮胎压力监测系统(Tire Pressure Monitoring System),是一种重要的汽车安全系统。以下是对汽车售后TPMS的详细解释: 一、TPMS的作用 TPMS的主要作用是在汽车行驶过程中对轮胎气压进行实时自动监测…...
LUCEDA IPKISS Tutorial 77:在版图一定范围内填充dummy
案例分享:在给定的Shape内填充dummy 所有代码如下: from si_fab import all as pdk from ipkiss3 import all as i3 from shapely.geometry import Polygon, MultiPolygon import numpy as np import matplotlib.pyplot as pltclass CellFilledWithCon…...
TON生态小游戏开发:推广、经济模型与UI设计的建设指南
随着区块链技术的快速发展,基于区块链的Web3游戏正引领行业变革。而TON生态小游戏,借助Telegram庞大的用户基础和TON(The Open Network)链上技术,已成为这一领域的明星之一。国内外开发者正迅速涌入,开发和…...
Python 量子机器学习:基础概念、关键算法与应用实践
🌟 Python 量子机器学习:基础概念、关键算法与应用实践 目录 🌍 量子计算的基本原理 量子位、叠加、纠缠等概念解析量子计算如何影响机器学习:速度与效率的提升 🚀 量子机器学习中的关键算法 量子支持向量机…...
信息安全数学基础(29) x^2 + y^2 = p
前言 方程 x2y2p 是一个涉及整数解和素数 p 的二次方程。这个方程在数论和几何中都有重要的意义,特别是在研究圆的整数点和费马大定理的背景下。 一、定义与背景 方程 x2y2p 表示一个平面上的圆,其圆心在原点 (0,0),半径为 p(当…...
ChatGPT国内中文版镜像网站整理合集(2024/10/06)
一、GPT中文镜像站 ① yixiaai.com 支持GPT4、4o以及o1,支持MJ绘画 ② chat.lify.vip 支持通用全模型,支持文件读取、插件、绘画、AIPPT ③ AI Chat 支持GPT3.5/4,4o以及MJ绘画 1. 什么是镜像站 镜像站(Mirror Siteÿ…...
图文深入理解Oracle DB Scheduler
值此国庆佳节,深宅家中,闲来无事,就多写几篇博文。今天继续宅继续写。本篇图文深入介绍Oracle DB Scheduler。 Oracle为什么要使Scheduler? 答案就是6个字:简化管理任务。 • Scheduler(调度程序&#x…...
gin如何具体利用Server-Send-Events(SSE)实时推送技术实现消息推送
目录 业务场景 解决方案 1. 轮询 2. WebSocket 3. SSE(Server-Send-Events) 代码实现 总结 业务场景 在抖音、美团等APP中,我们经常会遇到APP内部的消息推送,如关注的人的动态消息推送、点赞评论互动消息推送以及算法推荐消息推送。这些场景都是…...
写端口-tcp udp不同方式发包和接包
最近一直在学习网络编程,今天把 socket部分做一个总结。 Python 的socket库可以实现不同协议不同地址的发包和收包,无奈资料很少,官方例子有限,大神博客很少提及, 经过一番尝试后,总结以下几点用法以便大家…...
计算机的错误计算(一百二十)
摘要 探讨在许多应用中出现的函数 的计算精度问题。 例1. 考虑在许多应用中出现的函数 计算 不妨在Python下计算: 若用下列Rust代码在线计算: fn f(x: f64) -> f64 {(x.exp() - 1.0) / x }fn main() {let result f(0.9e-13);println!("…...
Spring Boot 中使用 JSON Schema 来校验复杂 JSON 数据
博客主页: 南来_北往 系列专栏:Spring Boot实战 在现代软件开发中,尤其是构建 RESTful API 时,处理 JSON 数据已成为一项基本任务。JSON(JavaScript Object Notation)因其轻量级和易于人类阅读的特点ÿ…...
QT实现Opencv图像处理
案例 基于QT的人脸识别 pro文件需要加以下代码 INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include/opencv INCLUDEPATH E:/opencv/opencv3.4-qt-intall/install/include/opencv2 LIBS E:/opencv/o…...
刚转Mac的新手如何卸载不需要的应用程序
最开始转Mac系统的时候很是苦恼,到底该怎么卸载App啊,App直接拖到废纸篓真的能卸载干净吗,卸载App时会不会留下一些文件残留,慢慢的会不会占满内存,于是我找到了一个免费的卸载工具——XApp。 这是一款Mac应用程序卸载…...
Unity 3d 继承MonoBahaviour的单例
在使用Unity3d开发游戏或做客户端项目时,单例是最常见的模式之一,他简单了类的创建,在代码中可以直接调用。下面是两个例子,代码两种不同类型的单例,一个是基本类的单例基类,不是unity MonoBehaviour的类都…...
grafana version 11.1.0 设置Y轴刻度为1
grafana 版本 # /usr/share/grafana/bin/grafana --version grafana version 11.1.0设置轴 Axis 搜索 Standard options 在"Decimals"中输入0,确保只显示整数...
Elasticsearch的安装与配置
注意:elasticsearch 禁止安装在/root路径下! 1、创建用户组 groupadd elastic 2、创建用户 useradd es -d /home/es -g elastic echo es | passwd es --stdin 3、给新创建的用户进行授权 chown -R es:elastic /home/es chmod -R 775 /home/es 4…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
【python异步多线程】异步多线程爬虫代码示例
claude生成的python多线程、异步代码示例,模拟20个网页的爬取,每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程:允许程序同时执行多个任务,提高IO密集型任务(如网络请求)的效率…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
Python基于历史模拟方法实现投资组合风险管理的VaR与ES模型项目实战
说明:这是一个机器学习实战项目(附带数据代码文档),如需数据代码文档可以直接到文章最后关注获取。 1.项目背景 在金融市场日益复杂和波动加剧的背景下,风险管理成为金融机构和个人投资者关注的核心议题之一。VaR&…...
AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
Qt Quick Controls模块功能及架构
Qt Quick Controls是Qt Quick的一个附加模块,提供了一套用于构建完整用户界面的UI控件。在Qt 6.0中,这个模块经历了重大重构和改进。 一、主要功能和特点 1. 架构重构 完全重写了底层架构,与Qt Quick更紧密集成 移除了对Qt Widgets的依赖&…...
前端打包工具简单介绍
前端打包工具简单介绍 一、Webpack 架构与插件机制 1. Webpack 架构核心组成 Entry(入口) 指定应用的起点文件,比如 src/index.js。 Module(模块) Webpack 把项目当作模块图,模块可以是 JS、CSS、图片等…...

