当前位置: 首页 > news >正文

MongoDB 介绍

一、MongoDB 介绍

MongoDB 是一个开源的、面向文档的数据库管理系统。它采用了灵活的数据模型,以类似 JSON 的文档形式存储数据,具有高可扩展性、高性能和丰富的功能。

主要特点包括:

  1. 灵活的数据模型:文档型数据库允许存储不同结构的文档,无需预先定义固定的模式。可以随时添加新的字段或修改现有字段,非常适合快速变化的应用场景。
  2. 高可扩展性:支持水平扩展,可以通过分片机制将数据分布在多个服务器上,以处理大规模数据和高并发访问。
  3. 丰富的查询语言:提供类似 SQL 的查询语言,支持复杂的查询操作,包括条件查询、排序、聚合等。同时,还支持索引以提高查询性能。
  4. 高可用性:支持副本集,可以实现数据冗余和故障转移,确保在节点故障时数据的持续可用。
  5. 支持多种编程语言:提供了丰富的驱动程序,支持多种编程语言,方便开发人员进行应用开发。

二、MongoDB 原理

  1. 存储结构:

    • MongoDB 将数据存储在文档中,文档是一种类似于 JSON 的结构,由键值对组成。文档可以包含不同类型的数据,如字符串、数字、日期、数组、嵌套文档等。
    • 数据库由多个集合组成,集合类似于关系型数据库中的表,但没有固定的模式。集合中的文档可以具有不同的结构。
    • MongoDB 使用内存映射文件进行数据存储,将数据文件映射到内存中,提高数据的读写性能。
  2. 索引机制:

    • MongoDB 支持多种类型的索引,包括单键索引、复合索引、文本索引、地理空间索引等。索引可以提高查询性能,特别是对于经常进行的查询操作。
    • MongoDB 会自动为文档的唯一标识符(_id)创建索引,也可以根据应用需求手动创建其他索引。
  3. 复制集:

    • 复制集是一组 MongoDB 服务器,其中一个服务器被指定为主服务器,其他服务器为从服务器。主服务器负责处理所有的写操作,并将数据同步到从服务器。
    • 从服务器可以提供读操作的负载均衡,提高系统的可用性和性能。如果主服务器发生故障,复制集会自动选举一个新的主服务器。
  4. 分片:

    • 分片是将数据分布在多个 MongoDB 服务器上的机制,以实现水平扩展。数据被分成多个数据块,每个数据块存储在不同的分片服务器上。
    • MongoDB 使用分片键来确定数据的分布,分片键可以是文档中的一个或多个字段。查询时,MongoDB 会根据分片键将查询路由到相应的分片服务器上。

三、以物联网存储实时数据为例讲解 MongoDB 的使用

  1. 设计数据模型:

    • 对于物联网实时数据,可以创建一个名为“sensor_data”的集合来存储传感器数据。每个文档可以包含传感器的标识、时间戳、测量值等字段。
    • 例如:
    {"sensor_id": "sensor1","timestamp": ISODate("2024-10-12T10:00:00Z"),"temperature": 25.5,"humidity": 60
    }
    
  2. 插入数据:

    • 使用 MongoDB 的驱动程序或命令行工具,可以将实时数据插入到数据库中。例如,使用 Python 的 pymongo 库:
    from pymongo import MongoClientclient = MongoClient('mongodb://localhost:27017/')
    db = client['iot_data']
    collection = db['sensor_data']data = {"sensor_id": "sensor1","timestamp": datetime.utcnow(),"temperature": 26.5,"humidity": 65
    }collection.insert_one(data)
    
  3. 查询数据:

    • 可以使用 MongoDB 的查询语言来查询特定传感器的数据或满足特定条件的数据。例如,查询传感器“sensor1”的所有数据:
    result = collection.find({"sensor_id": "sensor1"})
    for doc in result:print(doc)
    
  4. 建立索引:

    • 为了提高查询性能,可以根据经常查询的字段建立索引。例如,为“sensor_id”和“timestamp”字段建立复合索引:
    collection.create_index([("sensor_id", 1), ("timestamp", 1)])
    
  5. 数据聚合和分析:

    • MongoDB 提供了强大的聚合框架,可以对数据进行统计、分组、排序等操作。例如,计算某个时间段内传感器的平均温度:
    pipeline = [{"$match": {"sensor_id": "sensor1","timestamp": {"$gte": datetime(2024, 10, 12, 10, 0, 0),"$lt": datetime(2024, 10, 12, 11, 0, 0)}}},{"$group": {"_id": None,"average_temperature": {"$avg": "$temperature"}}}
    ]result = collection.aggregate(pipeline)
    print(result.next())
    

通过以上步骤,可以使用 MongoDB 有效地存储和处理物联网实时数据。根据实际需求,可以进一步优化数据模型、索引和查询,以提高系统的性能和可用性。

二、以下是使用 Java 代码以物联网存储实时数据为例展示 MongoDB 的使用方法:

1、添加依赖

如果使用 Maven 项目,在pom.xml文件中添加以下依赖:

<dependency><groupId>org.mongodb</groupId><artifactId>mongo-java-driver</artifactId><version>3.12.11</version>
</dependency>

2、代码示例

import com.mongodb.MongoClient;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import org.bson.Document;import java.util.Date;public class MongoDBIoTExample {public static void main(String[] args) {// 创建 MongoDB 连接MongoClient mongoClient = new MongoClient("localhost", 27017);// 选择数据库MongoDatabase database = mongoClient.getDatabase("iot_data");// 选择集合MongoCollection<Document> collection = database.getCollection("sensor_data");// 模拟物联网传感器数据Document sensorData = new Document().append("sensor_id", "sensor1").append("timestamp", new Date()).append("temperature", 25.5).append("humidity", 60);// 插入数据到集合中collection.insertOne(sensorData);System.out.println("数据插入成功!");// 查询特定传感器的数据Document query = new Document("sensor_id", "sensor1");collection.find(query).forEach(document -> System.out.println(document.toJson()));// 关闭连接mongoClient.close();}
}

在这个示例中,首先创建了一个到本地 MongoDB 服务器的连接。然后选择了名为iot_data的数据库和名为sensor_data的集合。接着模拟了一个物联网传感器的数据,并将其插入到集合中。最后,通过查询特定传感器的 ID 来检索数据并打印输出。

三、聚合管道的概念
在 MongoDB 中,聚合管道是一种强大的工具,用于对数据进行复杂的分析和转换。以下是使用 MongoDB 的聚合管道进行数据分析的步骤:

聚合管道是由多个阶段组成的流水线,每个阶段对输入数据进行特定的操作,并将结果传递给下一个阶段。聚合管道可以处理大量的数据,并提供了丰富的操作,如过滤、分组、排序、计算聚合值等。

1、基本的聚合管道操作

  1. $match阶段:用于过滤文档,只选择符合特定条件的文档进入管道的下一个阶段。

    • 例如,选择温度大于 25 的传感器数据:
    { $match: { temperature: { $gt: 25 } } }
    
  2. $group阶段:用于将文档分组,并对每组文档进行聚合操作。

    • 例如,按传感器 ID 分组并计算平均温度:
    {$group: {_id: "$sensor_id",averageTemperature: { $avg: "$temperature" }}
    }
    
  3. $sort阶段:用于对文档进行排序。

    • 例如,按时间戳升序排序:
    { $sort: { timestamp: 1 } }
    
  4. $project阶段:用于选择和重命名字段,以及进行计算和转换。

    • 例如,选择特定字段并计算温度差:
    {$project: {sensor_id: 1,temperatureDifference: { $subtract: [ "$temperature", 25 ] }}
    }
    

使用 Java 驱动程序执行聚合管道

以下是使用 Java 驱动程序执行聚合管道的示例代码:

import com.mongodb.MongoClient;
import com.mongodb.client.AggregateIterable;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import org.bson.Document;import java.util.Arrays;public class MongoDBAggregationExample {public static void main(String[] args) {// 创建 MongoDB 连接MongoClient mongoClient = new MongoClient("localhost", 27017);// 选择数据库MongoDatabase database = mongoClient.getDatabase("iot_data");// 选择集合MongoCollection<Document> collection = database.getCollection("sensor_data");// 定义聚合管道AggregateIterable<Document> result = collection.aggregate(Arrays.asList(new Document("$match", new Document("temperature", new Document("$gt", 25))),new Document("$group", new Document("_id", "$sensor_id").append("averageTemperature", new Document("$avg", "$temperature"))),new Document("$sort", new Document("averageTemperature", -1))));// 遍历结果for (Document document : result) {System.out.println(document.toJson());}// 关闭连接mongoClient.close();}
}

在这个示例中,首先创建了一个到本地 MongoDB 服务器的连接,并选择了名为iot_data的数据库和sensor_data集合。然后定义了一个聚合管道,包括过滤温度大于 25 的文档、按传感器 ID 分组并计算平均温度、按平均温度降序排序。最后,遍历结果并打印输出。

复杂的聚合操作

聚合管道还可以进行更复杂的操作,如嵌套分组、使用表达式进行计算、连接多个集合等。例如,可以使用$lookup阶段进行左外连接操作,将两个集合的数据关联起来进行分析。

以下是一个使用$lookup进行关联的示例:

{$lookup: {from: "sensor_metadata",localField: "sensor_id",foreignField: "sensor_id",as: "sensor_metadata"}
},
{$unwind: "$sensor_metadata"
},
{$project: {sensor_id: 1,temperature: 1,location: "$sensor_metadata.location"}
}

在这个示例中,假设存在另一个名为sensor_metadata的集合,包含传感器的元数据信息(如位置)。通过$lookup阶段将sensor_data集合与sensor_metadata集合进行关联,然后使用$unwind阶段将关联后的结果展开,最后使用$project阶段选择需要的字段。

通过灵活运用 MongoDB 的聚合管道,可以对数据进行各种复杂的分析和转换,满足不同的数据分析需求。

相关文章:

MongoDB 介绍

一、MongoDB 介绍 MongoDB 是一个开源的、面向文档的数据库管理系统。它采用了灵活的数据模型&#xff0c;以类似 JSON 的文档形式存储数据&#xff0c;具有高可扩展性、高性能和丰富的功能。 主要特点包括&#xff1a; 灵活的数据模型&#xff1a;文档型数据库允许存储不同…...

计算机网络:物理层 —— 物理层概述

文章目录 物理层功能物理层接口特性常见特性 相关概念 物理层&#xff08;Physical Layer&#xff09;是OSI&#xff08;Open Systems Interconnection&#xff09;模型的第一层&#xff0c;负责提供原始比特流传输的服务。它定义了硬件接口的电气、机械、功能和过程特性&#…...

HTTP的工作原理

HTTP&#xff08;Hypertext Transfer Protocol&#xff09;是一种用于在计算机网络上传输超文本数据的应用层协议。它是构成万维网的基础之一&#xff0c;被广泛用于万维网上的数据通信。&#xff08;超文本(Hypertext)是用超链接的方法&#xff0c;将各种不同空间的文字信息组…...

缓存数据减轻服务器压力

问题:不是所有的数据都需要请求后端的 不是所有的数据都需要请求后端的,有些数据是重复的、可以复用的解决方案:缓存 实现思路:每一个分类为一个key,一个可以下面可以有很多菜品 前端是按照分类查询的,所以我们需要通过分类来缓存缓存代码 /*** 根据分类id查询菜品** @pa…...

【自动驾驶】控制算法(十二)横纵向综合控制 | 从理论到实战全面解析

写在前面&#xff1a; &#x1f31f; 欢迎光临 清流君 的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落。&#x1f4dd; 个人主页&#xff1a;清流君_CSDN博客&#xff0c;期待与您一同探索 移动机器人 领域的无限可能。 &#x1f50d; 本文系 清流君 原创之作&…...

Python基础之List列表用法

1、创建列表 names ["张三","李四","王五","Mary"] 2、列表分片 names[1]&#xff1a;获取数组的第2个元素。 names[1:3]&#xff1a;获取数组的第2、第3个元素。包含左侧&#xff0c;不包含右侧。 names[:3]等同于names[0:3]&…...

视觉检测开源库-功能包框架搭建

chapt9/chapt9_ws/src&#xff0c;接着在目录下新建 yolov5_ros2 功能包&#xff0c;并添加相关依赖&#xff0c;完整命令如下&#xff1a; ros2 pkg create yolov5_ros2 --build-type ament_python --dependencies rclpy yolov5 cv_bridge sensor_msgs vision_msgs cv2 --lic…...

pytest的基础入门

pytest判断用例的成功或者失败 pytest识别用例失败时会报AssertionError或者xxxError错误&#xff0c;当捕获异常时pytest无法识别到失败的用例 pytest的fixture夹具 pytest的参数化 #coding:utf-8 import pytestfrom PythonProject.pytest_test.funcs.guess_point import ge…...

(31)非零均值信号的时域分析:均值、方差、与功率

文章目录 前言一、使用MATLAB生成余弦波并画图二、计算信号的均值、方差、与功率三、结果分析 前言 本文对叠加了直流分量的一段整周期余弦信号进行时域分析&#xff0c;使用MATLAB进行信号生成&#xff0c;并计算其均值、方差、与功率。最后给出对计算结果的分析&#xff0c;…...

架设传奇SF时提示此服务器满员,GEE引擎点开始游戏弹出服务器满员的解决方法

昨天一个朋友在架设GEE的传奇服务端时遇到一个奇怪的问题&#xff0c;就是在服务器外网架设时&#xff0c;建好角色点开始游戏提示此服务器满员&#xff0c;这个问题一般比较少见&#xff0c;而且出现的话一般都是GEE引擎的版本。 他折腾了半天&#xff0c;一直没进游戏&#x…...

QT day06

在QT使用数据库实现学生管理系统 头文件&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QSqlDatabase> #include <QSqlQuery> #include <QSqlRecord> QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAME…...

微信小程序-npm支持-如何使用npm包

文章目录 1、在内建终端中打开2、npm init -y3、Vant Weapp4、通过 npm 安装5、构建 npm 1、在内建终端中打开 Windows PowerShell 版权所有 (C) Microsoft Corporation。保留所有权利。尝试新的跨平台 PowerShell https://aka.ms/pscore6PS C:\Users\dgq\WeChatProjects\minip…...

Spring Cloud Stream 3.x+kafka 3.8整合

Spring Cloud Stream 3.xkafka 3.8整合&#xff0c;文末有完整项目链接 前言一、如何看官方文档(有深入了解需求的人)二、kafka的安装tar包安装docker安装 三、代码中集成创建一个测试topic&#xff1a;testproducer代码producer配置&#xff08;配置的格式&#xff0c;上篇文章…...

JavaScript中的数组

1.数组的概念 数组可以把一组相关的数据一起存放&#xff0c;并提供方便的访问/获取方式数组是指一组数据的集合&#xff0c;其中每个数据称之为元素(element)&#xff0c;在数组中可以存放任意类型的元素&#xff0c;数组是一种将一组数据存储在单个变量名下的优雅方式。 2.…...

UE5运行时动态加载场景角色动画任意搭配-场景角色相机动画音乐加载方法(三)

1、将场景打包为Pak并加载 1、参考这篇文章将场景打包为pak,UE4打包并加载Pak-Windows/iOS/Android不同平台Editor/Runtime不同运行模式兼容 2、在Mount Pak后直接打开Map即可 void UMapManager::OpenMap(FString Path) {UWorld* World = UGlobalManager::GetInstance()->…...

c# 中 中文、英文、数字、空格、标点符号占的字符大小

在C#中&#xff0c;中文、英文、数字、空格和标点符号在不同编码下所占的字节大小是不一样的。常见的编码有UTF-8、UTF-16、GB2312等。以下是在不同编码下各种字符类型所占的字节大小&#xff1a; UTF-8&#xff1a; 中文字符&#xff1a;3个字节 英文字符&#xff1a;1个字…...

前端_003_js扫盲

文章目录 var,let,const严格模式数据类型运算符事件常用对象函数绑定call() ,apply(),bind() 闭包浏览器中事件循环回调和异步Promiseasync和await DOMBOMAjax var,let,const let是var的升级版本&#xff0c;对于块作用域&#xff0c;var无法进行限制&#xff0c;let不会存在该…...

ValueError: You cannot perform fine-tuning on purely quantized models.

在使用peft 微调8bit 或者4bit 模型的时候&#xff0c;可能会报错&#xff1a; You cannot perform fine-tuning on purely quantized models. Please attach trainable adapters on top of the quantized model to correctly perform fine-tuning. Please see: https://huggi…...

DELL R720服务器阵列数据恢复,磁盘状态为Foreign

服务器无法正常进入系统&#xff0c;物理磁盘状态变成了Foreign 虚拟磁盘状态变成了Failed 阵列已经丢失了&#xff0c;需要手工强制导入外部配置 单击 Main Menu 屏幕上的 Configuration Management。单击 Manage Foreign Configuration 单击 Preview Foreign Configurati…...

VMDK 0X80BB0005 VirtualBOX虚拟机错误处理-数据恢复——未来之窗数据恢复

打开虚拟盘文件in7.vmdk 失败. Could not get the storage format of the medium 7\win7.vmdk (VERR_NOT_SUPPORTED). 返回 代码:VBOX_E_IPRT_ERROR (0X80BB0005) 组件:MediumWrap 界面:IMedium {a a3f2dfb1} 被召者:IVirtualBox {768 cd607} 被召者 RC:VBOX_E_OBJECT_NOT_F…...

【Verilog学习日常】—牛客网刷题—Verilog企业真题—VL67

十六进制计数器 描述 请用Verilog设计十六进制递增计数器电路&#xff0c;每个时钟周期递增1。 电路的接口如下图所示。Q[3:0]中&#xff0c;Q[3]是高位。 接口电路图如下&#xff1a; 输入描述&#xff1a; input clk , input rst_n ,…...

51、AVR、ARM、DSP等常用芯片之对比

51芯片 51芯片通常指的是基于8051内核的单片机&#xff0c;这是一种经典的微控制器&#xff08;MCU&#xff09;。虽然关于51芯片的详细现代应用和发展可能因具体型号和厂商而有所不同&#xff0c;但基于8051内核的单片机通常具有以下特点&#xff1a; 结构经典&#xff1a;8…...

PostgreSQL 和Oracle 表压缩的对比

PostgreSQL 和Oracle 表压缩的对比 Oracle 和 PostgreSQL 在表压缩的性能方面存在显著差异&#xff0c;主要体现在实现方式、压缩效果、对系统性能的影响以及适用场景等方面。以下是对两者表压缩性能的详细对比&#xff1a; 1. 实现方式 Oracle 表压缩 Oracle 提供了多种压…...

【pyspark学习从入门到精通3】弹性分布式数据集_1

目录 RDD 的内部工作机制 创建 RDDs Schema 从文件中读取 弹性分布式数据集&#xff08;RDDs&#xff09;是一种分布式的不可变 JVM 对象集合&#xff0c;它允许你非常快速地执行计算&#xff0c;并且它们是 Apache Spark 的支柱。 顾名思义&#xff0c;数据集是分布式的&a…...

宠物健康监测仪健康守护者

在宠物护理领域&#xff0c;一款名为宠物健康监测仪的智能设备正逐渐成为宠物主人的新宠。这款设备不仅仅是一个简单的听诊器&#xff0c;它更像是宠物健康的智能管家&#xff0c;能够实时监测宠物的生理指标&#xff0c;并根据这些数据提供个性化的健康建议。 宠物健康监测仪…...

手写mybatis之解析和使用ResultMap映射参数配置

前言 学习源码是在学习什么呢&#xff1f; 就是为了通过这些源码级复杂模型中&#xff0c;学习系统框架的架构思维、设计原则和设计模式。在这些源码学习手写的过程中&#xff0c;感受、吸收并也是锻炼一种思维习惯&#xff0c;并尝试把这些思路技术迁移到平常的复杂业务设计开…...

LDR6500:低成本一拖二快充线解决方案

随着科技的飞速发展&#xff0c;我们的电子设备日益增多&#xff0c;从智能手机到平板电脑&#xff0c;再到各种可穿戴设备&#xff0c;它们已成为我们日常生活不可或缺的一部分。然而&#xff0c;随之而来的充电问题也日益凸显。为了解决这一难题&#xff0c;Type-C接口一拖二…...

DS线性表之单链表的讲解和实现(2)

文章目录 前言一、链表的概念二、链表的分类三、链表的结构四、前置知识准备五、单链表的模拟实现定义头节点初始化单链表销毁单链表打印单链表申请节点头插数据尾插数据头删数据尾删数据查询数据在pos位置之后插入数据删除pos位置之后的数据 总结 前言 本篇的单链表完全来说是…...

LeetCode 73 Set Matrix Zeroes 题目解析和python代码

题目&#xff1a; Given an m x n integer matrix matrix, if an element is 0, set its entire row and column to 0’s. You must do it in place. Example 1: Input: matrix [[1,1,1],[1,0,1],[1,1,1]] Output: [[1,0,1],[0,0,0],[1,0,1]] Example 2: Input: matrix …...

鸿蒙--WaterFlow 实现商城首页

目录结构 ├──entry/src/main/ets // 代码区 │ ├──common │ │ ├──constants │ │ │ └──CommonConstants.ets // 公共常量类 │ │ └──utils │ │ └──Logger.ets // 日志打印类 │ ├──entryability │ │ └──EntryAbility.ets // 程序入口…...