当前位置: 首页 > news >正文

Python机器学习数据清洗到特征工程策略

Python机器学习数据清洗到特征工程策略

目录

  1. ✨ 数据清洗:处理缺失值与异常值的策略
  2. 🔄 特征选择:筛选与数据目标高度相关的特征
  3. 🛠 特征工程:数据转换与生成新特征的多样化方法
  4. 📊 类别型变量的数值化:数值编码与独热编码的实践
  5. 🚀 数据标准化与归一化:确保特征数据的一致性
  6. 💡 时间序列数据的预处理:日期特征提取与滞后特征生成

1. ✨ 数据清洗:处理缺失值与异常值的策略

在机器学习任务中,数据预处理的首要步骤是数据清洗。数据清洗的目的是识别和处理缺失值、重复数据以及异常值,以确保数据的完整性与质量。未经过清洗的原始数据通常存在各种不完美,这些问题若不处理,将直接影响模型的训练效果与预测结果。常见的数据清洗步骤包括处理缺失值、重复值和异常值。

处理缺失值

缺失值是数据预处理中最常见的问题之一。缺失值的处理方式有很多种,包括删除缺失值所在的行、用统计量(如均值、中位数等)填充,或使用插值法、建模填充等高级方法。以下是几种处理缺失值的方式:

  • 删除缺失值:当缺失值的比例较小或该特征对模型无关紧要时,可以选择直接删除这些数据行。Pandas库中的dropna()函数可以方便地执行这一操作:

    import pandas as pd# 创建包含缺失值的DataFrame
    data = {'Age': [25, 30, None, 35], 'Salary': [50000, None, 60000, 65000]}
    df = pd.DataFrame(data)# 删除包含缺失值的行
    df_cleaned = df.dropna()
    print(df_cleaned)
    
  • 填充缺失值:如果删除数据行会导致样本量不足,可以采用均值、中位数或众数来填充缺失值。Pandas库的fillna()函数可以直接进行填充操作:

    # 用列的均值填充缺失值
    df_filled = df.fillna(df.mean())
    print(df_filled)
    
  • 插值法填充:对于时间序列数据或有序数据,可以采用插值法来填充缺失值,以保证数据的连续性和合理性。通过插值法,可以根据数据的趋势进行预测填充:

    # 使用插值法填充缺失值
    df_interpolated = df.interpolate()
    print(df_interpolated)
    

处理重复值

重复值通常会降低模型的泛化能力,使模型对某些特定模式产生偏倚。因此,必须检测并处理重复数据。在Pandas中,可以使用duplicated()drop_duplicates()方法来检测和删除重复值。

# 检查重复值
duplicates = df.duplicated()# 删除重复值
df_no_duplicates = df.drop_duplicates()
print(df_no_duplicates)

处理异常值

异常值(outliers)是指偏离数据整体分布规律的值,它们可能对模型产生极大的负面影响。在处理异常值时,可以采用统计分析法(如箱线图法)或基于算法的检测方法(如局部异常因子)。一种常见的处理方法是将异常值替换为特定的统计值,或者通过过滤策略删除异常值。

import numpy as np# 创建包含异常值的数据
data_with_outliers = {'Age': [22, 25, 30, 120, 28], 'Salary': [50000, 60000, 55000, 90000, 65000]}
df_outliers = pd.DataFrame(data_with_outliers)# 使用Z-score方法识别异常值
df_outliers['Age_Zscore'] = (df_outliers['Age'] - df_outliers['Age'].mean()) / df_outliers['Age'].std()
df_outliers = df_outliers[(df_outliers['Age_Zscore'].abs() <= 3)]  # 保留Z-score在3以内的数据
print(df_outliers)

清洗后的数据更加可靠且具备更好的模型适应性。通过合理处理缺失值、重复值与异常值,可以大大提高机器学习模型的训练效果。


2. 🔄 特征选择:筛选与数据目标高度相关的特征

特征选择是机器学习中提高模型性能和可解释性的重要步骤。特征选择的目的是筛选出对目标变量最有帮助的特征,同时删除不相关或冗余的特征,以减少数据噪音、提高模型效率。

过滤法

过滤法通过统计指标(如相关系数、卡方检验、互信息等)来评估每个特征与目标变量之间的关联性。相关性高的特征保留,相关性低的特征则删除。这种方法简单高效,适用于大规模数据集。

from sklearn.feature_selection import SelectKBest, f_classif
from sklearn.datasets import load_iris# 加载Iris数据集
X, y = load_iris(return_X_y=True)# 选择与目标变量最相关的两个特征
selector = SelectKBest(score_func=f_classif, k=2)
X_new = selector.fit_transform(X, y)
print(X_new)

包装法

包装法则通过反复训练模型来评估特征的组合效果。递归特征消除(Recursive Feature Elimination, RFE)是一种常见的包装法,通过递归地移除最不重要的特征,最终选出最优特征子集。

from sklearn.feature_selection import RFE
from sklearn.ensemble import RandomForestClassifier# 使用随机森林作为基模型
model = RandomForestClassifier()# 实例化递归特征消除工具
rfe = RFE(estimator=model, n_features_to_select=2)# 进行特征选择
X_rfe = rfe.fit_transform(X, y)
print(X_rfe)

嵌入法

嵌入法则结合了模型训练和特征选择过程,直接通过模型的权重或特征重要性来决定特征的去留。例如,决策树和随机森林等模型本身就能够评估特征的重要性。

# 使用随机森林评估特征重要性
model.fit(X, y)
importances = model.feature_importances_# 打印特征的重要性
for i, importance in enumerate(importances):print(f"Feature {i}: Importance {importance}")

特征选择不仅能够提高模型的性能,还可以减少过拟合风险,使模型的泛化能力更强。通过合理选择特征,可以有效提高机器学习模型的精度和效率。


3. 🛠 特征工程:数据转换与生成新特征的多样化方法

特征工程是一项非常关键的任务,涉及对原始数据进行处理、转化甚至生成新特征。高质量的特征工程可以极大提升模型的表现。特征工程包括对连续变量的处理、离散化,以及生成派生特征等。

数值特征的处理

数值型特征往往需要进行适当的变换,以便更好地用于机器学习模型中。常见的操作包括对数变换、平方根变换等,以解决特征的分布不均衡问题。

import numpy as np# 对数变换
df['log_Age'] = np.log(df['Age'] + 1)# 平方根变换
df['sqrt_Age'] = np.sqrt(df['Age'])

离散化

对于连续变量,可以将其离散化为多个区间,从而帮助模型更好地捕捉变量的分布特征。cut()函数可以将数据分箱处理:

# 使用Pandas对连续变量进行分箱
df['Age_binned'] = pd.cut(df['Age'], bins=[0, 20, 40, 60, 80], labels=['Young', 'Adult', 'Middle-aged', 'Senior'])
print(df)

派生特征

派生特征是从已有数据中创建的新特征。例如,在时间序列数据中,可以提取出月份、季度等时间特征,这样能够增强模型对时间模式的捕捉能力。

# 提取日期特征
df['date'] = pd.to_datetime(df['date'])
df['month'] = df['date'].dt.month
df['quarter'] = df['date'].dt.quarter

特征工程通过合理转换与生成特征,能够帮助模型更好地学习数据中的模式,提高预测效果。


相关文章:

Python机器学习数据清洗到特征工程策略

Python机器学习数据清洗到特征工程策略 目录 ✨ 数据清洗&#xff1a;处理缺失值与异常值的策略&#x1f504; 特征选择&#xff1a;筛选与数据目标高度相关的特征&#x1f6e0; 特征工程&#xff1a;数据转换与生成新特征的多样化方法&#x1f4ca; 类别型变量的数值化&…...

多线程-进阶(2)CountDownLatchConcurrentHashMapSemaphore

目的; JUC(java.util.concurrent) 的常⻅类 接着上一节课到 1.信号量 Semaphore 信号量, ⽤来表⽰ "可⽤资源的个数". 本质上就是⼀个计数器。 理解信号量 可以把信号量想象成是停⻋场的展⽰牌: 当前有⻋位 100 个. 表⽰有 100 个可⽤资源. 当有⻋开进去的时候,…...

密码管理器KeePass的安装及使用

文章目录 软件下载安装汉化新建数据库创建\移动\修改 群组添加/修改/删除/移动 记录展示、搜索、锁定单独使用keepass生成密码的功能AES-256的密钥长度为256位&#xff0c;为啥可以设置超过32个字符的密钥&#xff1f; 软件下载 安装 分别解压&#xff1a;KeePass-2.53.1.zip&…...

星海智算:【萤火遛AI-Stable-Diffusion】无需部署一键启动

部署流程 1、注册算力云平台&#xff1a;星海智算 https://gpu.spacehpc.com/ 2、创建实例&#xff0c;镜像请依次点击&#xff1a;“镜像市场”->“更换”->“AI绘画”->“萤火遛AI-Stable Diffusion”。 程序首次启动可能需要几分钟&#xff0c;待实例显示“运行…...

JS生成器的特殊用法:委托yield*

yield 的基本用法 yield 用于在生成器函数中暂停函数执行&#xff0c;并返回一个值给外部调用者。当生成器再次被调用时&#xff0c;会从暂停的地方继续执行。 示例&#xff1a; function* simpleGenerator() {yield 1;yield 2;yield 3; }const gen simpleGenerator();cons…...

【CuPy报错】NVRTC_ERROR_COMPILATION (6)找不到 ‘vector_types.h‘

cupy安装不要再使用pip install cupy了&#xff0c; 已经替换成基于版本安装了pip install cupy-cuda12x&#xff0c;详见cupy官网。 安装完成后&#xff0c;在import cupy之后报错&#xff0c;找不到 ‘vector_types.h’: CompileException: /home/zoe/venv/lib/python3.10/…...

机器学习:知识蒸馏(Knowledge Distillation,KD)

知识蒸馏&#xff08;Knowledge Distillation&#xff0c;KD&#xff09;作为深度学习领域中的一种模型压缩技术&#xff0c;主要用于将大规模、复杂的神经网络模型&#xff08;即教师模型&#xff09;压缩为较小的、轻量化的模型&#xff08;即学生模型&#xff09;。在实际应…...

【C++入门篇 - 3】:从C到C++第二篇

文章目录 从C到C第二篇new和delete命名空间命名空间的访问 cin和coutstring的基本使用 从C到C第二篇 new和delete 在C中用来向系统申请堆区的内存空间 New的作用相当于C语言中的malloc Delete的作用相当于C语言中的free 注意&#xff1a;在C语言中&#xff0c;如果内存不够…...

YOLOv8模型改进 第七讲 一种新颖的注意力机制 Outlook Attention

随着目标检测技术的不断发展&#xff0c;YOLOv8 作为最新一代的目标检测模型&#xff0c;已经在多个基准数据集上展现了其卓越的性能。然而&#xff0c;在复杂场景中&#xff0c;如何进一步提升模型的检测精度和鲁棒性依然是一个重要挑战。本文将探讨将 Outlook Attention 机制…...

C#多线程基本使用和探讨

线程是并发编程的基础概念之一。在现代应用程序中&#xff0c;我们通常需要执行多个任务并行处理&#xff0c;以提高性能。C# 提供了多种并发编程工具&#xff0c;如Thread、Task、异步编程和Parallel等。 Thread 类 Thread 类是最基本的线程实现方法。使用Thread类&#xff0…...

PHP DateTime基础用法

PHP DateTime 的用法详解 一、引言 在开发 PHP 应用程序时&#xff0c;处理日期和时间是一个至关重要的任务。PHP 提供了强大的日期和时间处理功能&#xff0c;其中 DateTime 类是最常用的工具之一。DateTime 类提供了丰富的方法来创建、格式化、计算和比较日期时间&#xff…...

一次Fegin CPU占用过高导致的事故

记录一下 一次应用事故分析、排查、处理 背景介绍 9号上午收到CPU告警&#xff0c;同时业务反馈依赖该服务的上游服务接口响应耗时太长 应用告警-CPU使用率 告警变更 【WARNING】项目XXX,集群qd-aliyun,分区bbbb-prod,应用customer,实例customer-6fb6448688-m47jz, POD实例CP…...

【Go初阶】两万字快速入门Go语言

初见golang语法 package mainimport "fmt"func main() {/* 简单的程序 万能的hello world */fmt.Println("Hello Go")} 第一行代码package main定义了包名。你必须在源文件中非注释的第一行指明这个文件属于哪个包&#xff0c;如&#xff1a;package main…...

【React】使用 react hooks 需要遵守的原则

1&#xff09;只能在顶层调用Hooks 这是指你不能在循环、条件语句或嵌套函数中调用Hooks。确保每次组件渲染时&#xff0c;Hooks的调用顺序保持一致。因此&#xff0c;你应该始终在React函数组件的最顶层调用Hooks。 React依赖于Hooks的调用顺序。如果这些调用在不同的渲染中顺…...

Python编程:创意爱心表白代码集

在寻找一种特别的方式来表达你的爱意吗&#xff1f;使用Python编程&#xff0c;你可以创造出独一无二的爱心图案&#xff0c;为你的表白增添一份特别的浪漫。这里为你精选了六种不同风格的爱心表白代码&#xff0c;让你的创意和情感通过代码展现出来。 话不多说&#xff0c;咱…...

腾讯IM SDK:TUIKit发送多张图片

一、问题描述 在使用腾讯IM DEMO&#xff08;https://github.com/TencentCloud/chat-uikit-vue.git&#xff09;时发现其只支持发送一张图片&#xff1a; 二、解决方案 // src\TUIKit\components\TUIChat\message-input-toolbar\image-upload\index.vue<inputref"inp…...

《本地部署开源大模型》在Ubuntu 22.04系统下ChatGLM3-6B高效微调实战

在Ubuntu 22.04系统下ChatGLM3-6B高效微调实战 无论是在单机单卡&#xff08;一台机器上只有一块GPU&#xff09;还是单机多卡&#xff08;一台机器上有多块GPU&#xff09;的硬件配置上启动ChatGLM3-6B模型&#xff0c;其前置环境配置和项目文件是相同的。如果大家对配置过程还…...

Python 脚本来自动发送每日电子邮件报告

安装必要的库 我们将使用 smtplib 发送邮件&#xff0c;以及 email.mime 来创建电子邮件内容。另外&#xff0c;为了让脚本自动定时运行&#xff0c;可以使用操作系统的计划任务工具&#xff08;如 Linux 的 cron 或 Windows 的 Task Scheduler&#xff09;。 创建邮件内容 使…...

大语言模型与ChatGPT:深入探索与应用

文章目录 1. 前言2. 大语言模型的概述2.1 什么是大语言模型&#xff1f;2.2 Transformer架构的核心2.3 预训练与微调 3. ChatGPT的架构与技术背景3.1 GPT模型的演进3.2 ChatGPT的工作原理 4. ChatGPT的实际应用4.1 日常对话助手4.2 内容生成与写作4.3 编程辅助4.4 教育与学习辅…...

【从零开始的LeetCode-算法】3164.优质数对的总数 II

给你两个整数数组 nums1 和 nums2&#xff0c;长度分别为 n 和 m。同时给你一个正整数 k。 如果 nums1[i] 可以被 nums2[j] * k 整除&#xff0c;则称数对 (i, j) 为 优质数对&#xff08;0 < i < n - 1, 0 < j < m - 1&#xff09;。 返回 优质数对 的总数。 示…...

《Qt C++ 与 OpenCV:解锁视频播放程序设计的奥秘》

引言:探索视频播放程序设计之旅 在当今数字化时代,多媒体应用已渗透到我们生活的方方面面,从日常的视频娱乐到专业的视频监控、视频会议系统,视频播放程序作为多媒体应用的核心组成部分,扮演着至关重要的角色。无论是在个人电脑、移动设备还是智能电视等平台上,用户都期望…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

视频字幕质量评估的大规模细粒度基准

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用&#xff0c;因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型&#xff08;VLMs&#xff09;在字幕生成方面…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...