当前位置: 首页 > news >正文

吴恩达深度学习笔记(7)

误差分析:

你运行一个算法代替人类计算,但是没有达到人类的效果,需要手动检查算法中的错误,对模型的一些部分做相应调整,才能更好地提升分类的精度。如果不加分析去做,可能几个月的努力对于提升精度并没有作用。所以一个好的误差分析的流程就相当重要。

表现上限:关注改正一个误差能提高多少准确率

并行的错误分析

做一个表格,写出错误的类型,并对样本进行统计,计算错误类别的百分比,结果能给你提供参考,决定优先解决的问题

清理错误标签数据:

监督学习中,有输入数据和输出标签,当输出标签错误,首先应该考虑训练集的情况(其实深度学习对于训练集中的随机错误很稳健,但对系统误差(本身标记的错误,而不是分类器错误)不稳健),随机误差造成的错误对算法结果影响很小。

如果决定研究开发集手动重新检查标签,并且尝试纠正,现需要考虑额外的指南和原则:

  • 同时应用开发集和测试集
  • 检查算法预测准确和错误的例子,看那些需要被纠正的,有时即使预测对了,但仍需要被纠正,如果只纠正预测错的,评估算法错误率的时候,就会有更大的偏差
  • 研究开发集和测试集,去纠正标签,可能应用同样的方法到训练集上,也可能不,因为纠正训练集不是那么重要,同时,开发集和测试集需要保持同分布,但是训练集稍微i不同也是很合理的

训练和测试的不同分布:

如果想扩大训练样本,但是只有数据分布不同的数据,应该将这部分数据放入训练集。开发集和测试集用的是满足目标分布的数据

不匹配数据分布的偏差和方差:

偏差和方差能确定下一步工作的优先级,当训练、开发、测试集来自不同的分布时,偏差和方差的分析方法也会发生变化。
假如人类在某个问题上有近乎完美表现,即贝叶斯误差约等于0,进行误差分析时要兼顾训练集和开发集误差

如果训练集和开发集不同分布,从训练集误差到开发集误差有两个事情变了

  • 算法看到的数据只有训练集没有开发集
  • 俩个集合不同分布

新建立一个子集:训练-开发集---从训练集随机抽取一部分混淆,区分上述两个事情对误差的影响

数据不匹配解决方法:

  • 进行人工误差分析,尝试去了解训练集和开发测试集的具体差异在哪里。
  • 尝试把训练数据变得更像开发集,或者收集更多的类似开发集和测试集的数据,如增加噪音;

迁移学习:


可以将在一个任务的神经网络中学到的东西应用到另一个任务(预训练、微调)

迁移学习什么时候有用:当在被迁移的模型中有大量的数据,而目标模型数据较少时

参考:吴恩达Coursera深度学习课程 DeepLearning.ai 提炼笔记(3-2)-- 机器学习策略(2)_deeplearning ai 笔记 3-2-CSDN博客

相关文章:

吴恩达深度学习笔记(7)

误差分析: 你运行一个算法代替人类计算,但是没有达到人类的效果,需要手动检查算法中的错误,对模型的一些部分做相应调整,才能更好地提升分类的精度。如果不加分析去做,可能几个月的努力对于提升精度并没有…...

二、数据离线处理场景化解决方案

https://connect.huaweicloud.com/courses/learn/Learning/sp:cloudEdu_?courseNocourse-v1:HuaweiXCBUCNXE147Self-paced&courseType1 1.离线处理方案 **业务场景-安平领域** 业务场景-金融领域 离线批处理常用组件 HDFS:分布式文件系统,为各种…...

算法题总结(十四)——贪心算法(上)

贪心算法 什么是贪心 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 贪心的套路(什么时候用贪心) 刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试…...

hive on tez 指定队列后任务一直处于running状态

如上图所示一直处于running状态&#xff0c;查看日志发现一直重复弹出同一个info&#xff1a; 2024-10-18 16:57:32,739 [INFO] [AMRM Callback Handler Thread] |rm.YarnTaskSchedulerService|: Allocated: <memory:0, vCores:0> 释义: 当前应用程序没有分配到任何内存…...

闲说视频清晰度和各种格式、编码技术的发展历史

文章目录 引子清晰度视频格式&#xff1a;MP4、AVI 、MKV、MOV、WMV、FLV 、RMVB等等什么是视频格式MP4AVIMKVMOVWMVFLVRM / RMVB其他 编码技术&#xff1a;MPEG-1、MPEG-2、MPEG-4、RealVideo、DivX、XviD、H.264&#xff08;AVC&#xff09;、H.265&#xff08;HEVC&#xff…...

嵌入式职业规划

嵌入式职业规划 在嵌入式的软件开发中&#xff0c;可以分为&#xff1a; 嵌入式MCU软件开发工程师&#xff1b; 嵌入式Linux底层&#xff08;BSP&#xff09;软件开发工程师&#xff1b; 嵌入式Linux应用开发工程师&#xff1b; 嵌入式FPGA算法开发工程师 对于前两个阶段 …...

Nginx - 实现 TCP/DUP流量的按 IP 动态转发

文章目录 需求背景需求目标&#xff1a;使用场景&#xff1a;成功标准&#xff1a;技术要求&#xff1a; Ng配置测试验证 需求 Nginx Stream TCP 协议按 IP 转发 背景 为了优化网络性能和提升服务的可用性&#xff0c;我们需要在 Nginx 中配置 stream 模块&#xff0c;使其根…...

基于深度学习的进化神经网络设计

基于深度学习的进化神经网络设计&#xff08;Evolutionary Neural Networks, ENNs&#xff09;结合了进化算法&#xff08;EA&#xff09;和神经网络&#xff08;NN&#xff09;的优点&#xff0c;用于自动化神经网络架构的设计和优化。通过模拟自然进化的选择、变异、交叉等过…...

软考-软件设计师(10)-专业英语词汇汇总与新技术知识点

场景 以下为高频考点、知识点汇总。 软件设计师上午选择题知识点、高频考点、口诀记忆技巧、经典题型汇总: 软考-软件设计师(1)-计算机基础知识点:进制转换、数据编码、内存编址、串并联可靠性、海明校验码、吞吐率、多媒体等: 软考-软件设计师(1)-计算机基础知识点:进制…...

PyTorch 2.5 发布带来一些新特性和改进

官网&#xff1a;https://github.com/pytorch/pytorchGitHub&#xff1a;https://github.com/pytorch/pytorch原文&#xff1a;https://github.com/pytorch/pytorch/releases/tag/v2.5.0 主要亮点 (Highlights)] SDPA CuDNN 后端&#xff1a;为 torch.nn.functional.scaled_d…...

算法:560.和为k的子数组

题目 链接:leetcode链接 思路分析&#xff08;前缀和&#xff09; 注意&#xff1a;我们前面讲过滑动窗口可以处理子数组、子串等问题&#xff0c; 但是在这道题目里面注意数据范围 -1000 < nums[i] < 1000 nums[i]可正可负&#xff0c;区间的和没有单调性&#xff0c;使…...

C++之list(2)

list(2) list的迭代器 const迭代器 根据我们之前学过的知识&#xff1a; const int*p1;//修饰的是指向的内容 int *const p2;//修饰的是迭代器本身我们写const迭代器&#xff0c;期望的是指向的内容不能修改。 所以更期望写上面p1的形式 const迭代器与普通迭代器的不同点在于…...

React Componet类组件详解(老项目)

React类组件是通过创建class继承React.Component来创建的&#xff0c;是React中用于构建用户界面的重要部分。以下是对React类组件的详细解释&#xff1a; 一、定义与基本结构 类组件使用ES6的class语法定义&#xff0c;并继承自React.Component。它们具有更复杂的功能&#…...

位运算题目-Java实现-LeetCode题解:判断字符是否唯一-丢失的数字-两整数之和-只出现一次的数字 II-消失的两个数字

这里是Themberfue 上一篇文章讲完了常见位运算的技巧以及总结 那么本章则通过五道题来运用这些技巧 判定字符是否唯一 题目解析 本题要求判断给定字符串中的字符是否唯一&#xff0c;也就是每个字符是否只出现一次 算法讲解 本题用哈希表遍历每一个字符也可以解决 如果这题使…...

复合泊松过程

复合泊松过程的均值、方差与特征函数 复合泊松过程的定义 复合泊松过程 ( Y(t) ) 是一种常见的随机过程&#xff0c;通常定义为&#xff1a; Y ( t ) ∑ k 1 N ( t ) X k Y(t) \sum_{k1}^{N(t)} X_k Y(t)k1∑N(t)​Xk​ 其中&#xff1a; ( N(t) ) 是一个强度为 ( \lambd…...

[week1] newstar ctf ezAndroidStudy

本题主要考查对 APK 基本结构的掌握 查看 AndroidManifest.xml 可以发现 activity 只有 Homo 和 MainActivity 我们用 Jadx 打开 work.pangbai.ezandroidstudy.Homo 就可以获得 flag1 打开 resources.arsc/res/value/string.xml 搜索 flag2 即可 按描述到 /layout/activity_ma…...

TCP——Socket

应用进程只借助Socket API发和收但是不关心他是怎么进行传和收的 数据结构 图示Socket连接 捆绑属于隐式捆绑...

OpenStack服务Swift重启失效(已解决)

案例分析Swift重启失效 1. 报错详情 在重新启动 VMware 虚拟机后&#xff0c;我们发现 OpenStack 的 Swift 服务出现了 503 Service Unavailable 错误。经过排查&#xff0c;问题根源在于 Swift 服务所使用的存储挂载是临时挂载&#xff0c;而非永久挂载。 Swift 服务依赖于…...

System.Text.Json类库进行json转化时ValueKind:Object问题

当你的使用的Json库是System.Text.Json&#xff0c;而不是Newtonsoft.Json库的时候&#xff0c;你可能遇到以下问题及其解决办法。通常的解决办法是进行一些对应的配置。此外就需要根据情况使用自定义转换器实现你的需求。以下是通常遇到的使用自定义转换器解决的例子: Q1.当遇…...

免费Excel工作表同类数据合并工具

下载地址&#xff1a;https://pan.quark.cn/s/81b1aeb45e4c 在 Excel 表格里&#xff0c;当我们试图手动将多行同类数据合并为一行时&#xff0c;会遭遇诸多棘手的困难以及繁杂的操作流程。在确定哪些数据属于可合并的同类数据时&#xff0c;单纯依靠人工进行对比&#xff0c;极…...

如何在算家云搭建Video-Infinity(视频生成)

一、模型介绍 Video-Infinity是一个先进的视频生成模型&#xff0c;使用多个 GPU 快速生成长视频&#xff0c;无需额外训练。它能够基于用户提供的文本或图片提示&#xff0c;创造出高质量、多样化的视频内容。 二、模型搭建流程 1.大模型 Video-Infinity 一键使用 基础环境…...

LeetCode搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 示例 1: 输入: nums [1,3,5,6], target 5 输出: 2 …...

UE5学习笔记24-添加武器弹药

一、给角色的武器添加弹药 1.创建界面&#xff0c;根据笔记23的界面中添加 2.绑定界面控件 UPROPERTY(meta (Bindwidget))UTextBlock* WeaponAmmoAmount;UPROPERTY(meta (Bindwidget))UTextBlock* CarriedAmmoAmount; 3.添加武器类型枚举 3.1创建武器类型枚举头文件 3.2创建文…...

限制游客在wordpress某分类下阅读文章的数量

在WordPress中实现某个分类下的内容限制游客只能阅读前5篇文章&#xff0c;注册用户可以阅读更多文章的功能&#xff0c;可以通过以下步骤来完成&#xff1a; 1. 安装和激活插件 首先&#xff0c;你可以使用一个插件来简化这个过程。一个常用的插件是 “MemberPress” 或 “R…...

Oracle云主机申请和使用教程:从注册到SSH连接的全过程

今天我要和大家分享如何成功申请Oracle云主机,并进行基本的配置和使用。我知道很多同行的朋友在申请Oracle云主机时都遇到了困难&#xff08;疑惑abc错误&#xff09;,可能试了很多次都没有成功。现总结一下这些年来的一些注册流程经验&#xff0c;或许你们也能成功申请到自己的…...

芯知识 | NVH-FLASH语音芯片支持平台做语音—打造音频IC技术革新

随着科技的飞速发展&#xff0c;人们对于电子产品的音频性能要求越来越高。在这种背景下&#xff0c;NVH-FLASH系列语音芯片应运而生&#xff0c;作为音频IC领域的一次重大技术革新&#xff0c;NVH-FLASH系列语音芯片凭借其卓越的性能与灵活的支持平台&#xff0c;正逐步引领着…...

机器学习——解释性AI与可解释性机器学习

解释性AI与可解释性机器学习: 理解机器学习模型背后的逻辑 随着人工智能技术的广泛应用&#xff0c;机器学习模型越来越多地被用于决策过程。然而&#xff0c;这些模型&#xff0c;尤其是深度学习模型&#xff0c;通常被视为“黑箱”&#xff0c;难以理解其背后的决策逻辑。解…...

中国全国省市区县汇总全国省市区json省市区数据2024最新

简介 包含全国省市区县数据,共3465个。 全国总共有23个省、5个自治区、4个直辖市、2个特别行政区。 ——更新于2024年10月16日,从2017年开始,已经更新坚持7年 从刚开始1000个左右的城市json,到现在全国省市区县3465个。 本人感觉应该是目前最完善的~ 每年都在更新中,…...

[Linux#67][IP] 报头详解 | 网络划分 | CIDR无类别 | DHCP动态分配 | NAT转发 | 路由器

目录 一. IP协议头格式 学习任何协议前的两个关键问题 IP 报头与有效载荷分离 分离方法 为什么需要16位总长度 如何交付 二. 网络通信 1.IP地址的划分理念 2. 子网管理 3.网络划分 CIDR&#xff08;无类别域间路由&#xff09; 目的IP & 当前路由器的子网掩码 …...

路由器原理和静态路由配置

一、路由器的工作原理 根据路由表转发数据 接收数据包→查看目的地址→与路由表进行匹配找到转发端口→转发到该端口 二、路由表的形成 它是路由器中维护的路由条目的集合&#xff0c;路由器根据路由表做路径选择&#xff0c;里面记录了网段ip地址和对应下一跳接口的接口号。…...