当前位置: 首页 > news >正文

NeRF三维重建—神经辐射场Neural Radiance Field(二)体渲染相关

NeRF三维重建—神经辐射场Neural Radiance Field(二)体渲染相关

粒子采集部分

粒子采集的部分我们可以理解为,在已知粒子的情况下,对图片进行渲染的一个正向的过程

  • 空间坐标(x,y,z)
  • 发射的光线通过相机模型成为图片上的像素坐标(u,v)
  • 粒子颜色即为像素颜色
  • (u, v)与(x, y, z)的公式如下:也就是之前在相机模型中提到的一些有关坐标转化的部分知识。

在这里插入图片描述

内参+外参来进行的

相反我们的任务是给定一张图片,我们需要的是在许多张图片中推导出相机为位姿信息。

  • 可以看作是沿着某一条射线上的无数个发光点的“和”;
  • 利用相机模型,反推射线
  • 那么这个射线表示为:r(t)=o+td
  • O为射线原点,d为方向,t为距离
  • 极坐标表示

总结来说我们的这个过程就是相机模型的一个反向的过程表达。由像素(u,v)反推出像素的信息来。

在这里插入图片描述

在三维的空间中采样射线的信息。

这一部分就是我们有关的粒子采集的部分信息了。可以得到我们的原点和方向的信息。我们通过这两个信息就可以表示出这条射线了。

体渲染

我们最后得到的像素的颜色是无数个发光粒子在该射线长度上经过累计得到的和。(作为我们像素最终的颜色)。

我们在表示出的这条射线上采用一定的方法取发光粒子的值,最后通过积分就可以得出体渲染所得到的像素的位置坐标了。

r ( t ) = o + t d r(t)=o+td r(t)=o+td

在我们计算的时候这个t是离散化的,我们如何通过选择这个离散的t来进行计算呢?

  1. 方法1:设置near=2,far=6。在near和far之间均匀采样64个点
  • 通过图像和相机的位姿,来计算表示一条射线。
  • 在射线上均匀的采样了64个点
  • 训练时,一张图片取1024个像素,
  • 得到1024条射线,每条射线上采样64个粒子共1024*64个粒子

我们的输出就是粒子的密度和颜色值

对之前的模型的信息进行一定的补充:

γ ( p ) = ( sin ⁡ ( 2 0 π p ) , cos ⁡ ( 2 0 π p ) , … , sin ⁡ ( 2 L − 1 ) , cos ⁡ ( 2 L − 1 π p ) ) \gamma(p)=\left(\sin \left(2^{0} \pi p\right), \cos \left(2^{0} \pi p\right), \ldots, \sin \left(2^{L-1}\right), \cos \left(2^{L-1} \pi p\right)\right) γ(p)=(sin(20πp),cos(20πp),,sin(2L1),cos(2L1πp))

  1. p需要归一化到[-1,1]
  2. 对于空间坐标x,L=10,r(x)是60D
  3. 对于视角坐标d,L= 4,r(d)是24D
  4. 在代码中,加上初始值:r(x)是63D,r(d)是27D

LOSS

  1. GT是图片某一像素的RGB
  2. 将该像素对应光线上的粒子颜色进行求和
  3. 粒子的颜色和:该像素颜色的预测值
  4. 粒子的颜色和]与像素颜色做MSE(均方误差损失)

L = ∑ r ∈ R ∥ C ^ ( r ) − C ( r ) ∥ 2 2 R 是每个batch的射线(1024条)  \begin{array}{l} L=\sum_{r \in R}\|\hat{C}(r)-C(r)\|_{2}^{2}\\ R \text { 是每个batch的射线(1024条) } \end{array} L=rRC^(r)C(r)22R 是每个batch的射线(1024

体渲染连续积分

C ( s ) ^ = ∫ 0 + ∞ T ( s ) σ ( s ) C ( s ) d s T ( s ) = e − ∫ 0 s σ ( t ) d t \begin{array}{l} \hat{C(s)}=\int_{0}^{+\infty} T(s) \sigma(s) C(s) d s \\ T(s)=e^{-\int_{0}^{s} \sigma(t) d t} \end{array} C(s)^=0+T(s)σ(s)C(s)dsT(s)=e0sσ(t)dt

  • T(s):在s点之前,光线没有被阻碍的概率.
  • o(s):在s点处,光线碰击粒子(光线被粒子阻碍)的概率密度
  • C(s):在s点处,粒子光出的颜色
  • 各点的颜色和概率密度已知,要先求T(s)

每个点的体密度与颜色相乘在结合一下不透明度来进行说明。

理论推导部分说明:

在这里插入图片描述

  1. 我们对上面的公式进行推导首先推导T的公式

T ( s + d s ) = T ( s ) [ 1 − σ ( s ) d s ] T ( s + d s ) = T ( s ) − T ( s ) σ ( s ) d s T ( s + d s ) − T ( s ) = − T ( s ) σ ( s ) d s d T ( s ) = − T ( s ) σ ( s ) d s d T ( s ) T ( s ) = − σ ( s ) d s \begin{array}{l} T(s+d s)=T(s)[1-\sigma(s) d s] \\ T(s+d s)=T(s)-T(s) \sigma(s) d s \\ T(s+d s)-T(s)=-T(s) \sigma(s) d s \\ d T(s)=-T(s) \sigma(s) d s \\ \frac{d T(s)}{T(s)}=-\sigma(s) d s \end{array} T(s+ds)=T(s)[1σ(s)ds]T(s+ds)=T(s)T(s)σ(s)dsT(s+ds)T(s)=T(s)σ(s)dsdT(s)=T(s)σ(s)dsT(s)dT(s)=σ(s)ds

两边同时积分就可以得到:

∫ 0 t d T ( s ) T ( s ) = ∫ 0 t − σ ( s ) d s ∫ 0 t 1 T ( s ) d T ( s ) = ∫ 0 t − σ ( s ) d s ln ⁡ T ( s ) ∣ 0 t = ∫ 0 t − σ ( s ) d s ln ⁡ T ( t ) − ln ⁡ T ( 0 ) = ∫ 0 t − σ ( s ) d s ln ⁡ T ( t ) = ∫ 0 t − σ ( s ) d s T ( t ) = e ∫ 0 t − σ ( s ) d s \begin{aligned} \int_{0}^{t} \frac{d T(s)}{T(s)} & =\int_{0}^{t}-\sigma(s) d s \\ \int_{0}^{t} \frac{1}{T(s)} d T(s) & =\int_{0}^{t}-\sigma(s) d s \\ \left.\ln T(s)\right|_{0} ^{t} & =\int_{0}^{t}-\sigma(s) d s \\ \ln T(t)-\ln T(0) & =\int_{0}^{t}-\sigma(s) d s \\ \ln T(t) & =\int_{0}^{t}-\sigma(s) d s \\ T(t) & =e^{\int_{0}^{t}-\sigma(s) d s} \end{aligned} 0tT(s)dT(s)0tT(s)1dT(s)lnT(s)0tlnT(t)lnT(0)lnT(t)T(t)=0tσ(s)ds=0tσ(s)ds=0tσ(s)ds=0tσ(s)ds=0tσ(s)ds=e0tσ(s)ds

因为是离散的数据我们要将之前推导出来的连续形式进行离散化的处理。

  1. 计算机只能处理离散化数据
  2. 将光线[O,s]划分为N个等间距区间[Tn→ Tn+1]
  3. n=0,1,2,…,N
  4. 间隔长度为on

C ^ ( r ) = ∑ i = 1 N T i ( 1 − e − σ i δ i ) c i where  T i = e − ∑ j = 1 i − 1 σ j δ j \begin{array}{l} \hat{C}(r)=\sum_{i=1}^{N} T_{i}\left(1-e^{-\sigma_{i} \delta_{i}}\right) c_{i}\\ \text { where } T_{i}=e^{-\sum_{j=1}^{i-1} \sigma_{j} \delta_{j}} \end{array} C^(r)=i=1NTi(1eσiδi)ci where Ti=ej=1i1σjδj

下面我们补充我们的离散化公式的一个推导过程。

我们对每个光区贡献的光强进行累计操作。

C ^ = ∑ n = 0 N I ( T n → T n + 1 ) \hat{C}=\sum_{n=0}^{N} I\left(T_{n} \rightarrow T_{n+1}\right) C^=n=0NI(TnTn+1)

I ( T n → T n + 1 ) = ∫ t n t n + 1 T ( t ) σ n C n d t = σ n C n ∫ t n t n + 1 T ( t ) d t = σ n C n ∫ t n t n + 1 e − ∫ 0 t σ ( s ) d s d t = σ n C n ∫ t n t n + 1 e − ( ∫ 0 t n σ ( s ) d s + ∫ t n t σ ( s ) d s ) d t = σ n C n ∫ t n t n + 1 e − ∫ 0 t n σ ( s ) d s e − ∫ t n t σ ( s ) d s d t = σ n C n T ( 0 → t n ) ∫ t n t n + 1 e − ∫ t n t σ ( s ) d s d t \begin{aligned} I\left(T_{n} \rightarrow T_{n+1}\right) & =\int_{t_{n}}^{t_{n+1}} T(t) \sigma_{n} C_{n} d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} T(t) d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} e^{-\int_{0}^{t} \sigma(s) d s} d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} e^{-\left(\int_{0}^{t_{n}} \sigma(s) d s+\int_{t_{n}}^{t} \sigma(s) d s\right)} d t \\ & =\sigma_{n} C_{n} \int_{t_{n}}^{t_{n+1}} e^{-\int_{0}^{t_{n}} \sigma(s) d s} e^{-\int_{t_{n}}^{t} \sigma(s) d s} d t \\ & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right) \int_{t_{n}}^{t_{n+1}} e^{-\int_{t_{n}}^{t} \sigma(s) d s} d t \end{aligned} I(TnTn+1)=tntn+1T(t)σnCndt=σnCntntn+1T(t)dt=σnCntntn+1e0tσ(s)dsdt=σnCntntn+1e(0tnσ(s)ds+tntσ(s)ds)dt=σnCntntn+1e0tnσ(s)dsetntσ(s)dsdt=σnCnT(0tn)tntn+1etntσ(s)dsdt

经过化简就可以得到最后的公式的形式:

I ( T n → T n + 1 ) = σ n C n T ( 0 → t n ) ∫ t n t n + 1 e − ∫ t n t σ n d s d t = σ n C n T ( 0 → t n ) ∫ t n t n + 1 e − σ n ( t − t n ) d t = σ n C n T ( 0 → t n ) [ − 1 σ n e − σ n ( t − t n ) ∣ t n t n + 1 ] = C n T ( 0 → t n ) ( 1 − e σ n δ n ) = C n e − ∑ i = 0 n − 1 σ i δ i ( 1 − e σ n δ n ) . \begin{aligned} I\left(T_{n} \rightarrow T_{n+1}\right) & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right) \int_{t_{n}}^{t_{n+1}} e^{-\int_{t_{n}}^{t} \sigma_{n} d s} d t \\ & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right) \int_{t_{n}}^{t_{n+1}} e^{-\sigma_{n}\left(t-t_{n}\right)} d t \\ & =\sigma_{n} C_{n} T\left(0 \rightarrow t_{n}\right)\left[-\left.\frac{1}{\sigma_{n}} e^{-\sigma_{n}\left(t-t_{n}\right)}\right|_{t_{n}} ^{t_{n+1}}\right] \\ & =C_{n} T\left(0 \rightarrow t_{n}\right)\left(1-e^{\sigma_{n} \delta_{n}}\right) \\ & =C_{n} e^{-\sum_{i=0}^{n-1} \sigma_{i} \delta_{i}}\left(1-e^{\sigma_{n} \delta_{n}}\right). \end{aligned} I(TnTn+1)=σnCnT(0tn)tntn+1etntσndsdt=σnCnT(0tn)tntn+1eσn(ttn)dt=σnCnT(0tn)[σn1eσn(ttn) tntn+1]=CnT(0tn)(1eσnδn)=Cnei=0n1σiδi(1eσnδn).

  • 粗模型:输入均匀采样粒子,输出密度
  • 细模型:根据密度,二次采样
  • 最后输出:采用模型2的输出
  • 粗模型和细模型结构相同

相关文章:

NeRF三维重建—神经辐射场Neural Radiance Field(二)体渲染相关

NeRF三维重建—神经辐射场Neural Radiance Field(二)体渲染相关 粒子采集部分 粒子采集的部分我们可以理解为,在已知粒子的情况下,对图片进行渲染的一个正向的过程。 空间坐标(x,y,z)发射的光线通过相机模型成为图片上…...

软件测试工程师:如何写出好的测试用例?

软件测试用例(Test Case)是软件测试过程中的一种详细文档或描述,用于描述在特定条件下,对软件系统或组件进行测试的步骤、输入数据、预期输出和预期行为。编写高质量的测试用例是确保软件质量的关键步骤之一。以下是一些编写优秀测试用例的建议&#xff…...

「图::连通」详解并查集并实现对应的功能 / 手撕数据结构(C++)

目录 概述 成员变量 创建销毁 根节点访问 路径压缩 启发式合并 复杂度 Code 概述 并查集,故名思议,能合并、能查询的集合,在图的连通性问题和许多算法优化上着广泛的使用。 这是一个什么数据结构呢? 一般来讲,并查集是…...

基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 (完整程序运行后无水印) PSO优化过程: PSO优化前后,模型训练对比: 数据预测对比: 误差回归对比&a…...

PyTorch 的 DataLoader 类介绍

DataLoader 类 功能与作用 PyTorch 是一个流行的开源机器学习库,它提供了一个名为 DataLoader 的类,用于加载数据集并将其封装成一个可迭代的对象。DataLoader 可以自动地将数据集划分为多个批次,并在训练过程中迭代地返回这些批次。是用于加…...

【设计模式系列】命令模式

目录 一、什么是命令模式 二、命令模式的角色 三、命令模式的典型应用场景 四、命令模式在Runnable中的应用 一、什么是命令模式 命令模式(Command Pattern)是一种行为设计模式,它将一个请求或简单操作封装为一个对象。这个模式提供了一种…...

uniapp中使用lottie实现JSON动画

uniapp中使用lottie实现JSON动画 不喜欢废话直接开干一、引入相关依赖二、在项目的目录新建目录结构三、操作步骤四、编写自定义组件代码五、组件的使用提一嘴更多lottie-web常用方法添加点击事件 不喜欢废话直接开干 一、引入相关依赖 npm install lottie-web # 如果有问题可…...

AcWing275

题目重述 这道题的核心是利用方格取数模型的思想,将两条路径的传递过程映射为同时出发的两条路径,避免重复格子的经过。题解通过以下步骤解题: 路径映射:从 (n, m) 回到 (1, 1) 的路径,可以转换成 (1, 1) 到 (n, m) …...

Windows系统部署redis自启动服务【亲测可用】

文章目录 引言I redis以本地服务运行(Windows service)使用MSI安装包配置文件,配置端口和密码II redis服务以终端命令启动缺点运行redis-server并指定端口和密码III 知识扩展确认redis-server可用性Installing the Service引言 服务器是Windows系统,所以使用Windows不是re…...

深入了解机器学习 (Descending into ML):线性回归

人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁。数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录。Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一…...

每日OJ题_牛客_集合_排序_C++_Java

目录 牛客_集合_排序 题目解析 C代码 Java代码 牛客_集合_排序 集合_牛客题霸_牛客网 (nowcoder.com) 题目解析 笔试题可直接用set排序&#xff0c;面试可询问是否要手写排序函数&#xff0c;如果要手写排序&#xff0c;推荐写快排。 C代码 #include <iostream> …...

鸿蒙网络编程系列27-HTTPS服务端证书的四种校验方式示例

1. 服务端数字证书验证的问题 在鸿蒙客户端对服务端发起HTTPS请求时&#xff0c;如果使用HttpRequest的request发起请求&#xff0c;那么就存在服务端数字证书的验证问题&#xff0c;你只有两个选择&#xff0c;一个是使用系统的CA&#xff0c;一个是使用自己选定的CA&#xf…...

scala继承

Scala中继承的定义为在原有类的基础上定义一个新类&#xff0c;原有类称为父类&#xff0c;新类称为子类。 当子类从父类中继承的方法不能满足需要时&#xff0c;子类需要有自己的行为&#xff0c;怎么办&#xff1f; 此时使用override可以重写父类方法。 class Aniaml(){va…...

【Hive】2-Apache Hive概述、架构、组件、数据模型

Apache Hive概述 什么是Hive Apache Hive是一款建立在Hladoop之上的开源数据仓库系统&#xff0c;可以将存储在Hadoop文件中的结构化、半结构化数据文件映射为一张数据库表&#xff0c;基于表提供了一种类似SQL的查询模型&#xff0c;称为Hive查询语言(HQL)&#xff0c;用于访…...

关于目前面试八股文的一些心得体会

现在是2024年10月&#xff0c;自22年开始&#xff0c;明显感觉到整个计算机行业&#xff0c;越来越卷了。一方面&#xff0c;随着信息的传播&#xff0c;越来越多的新人涌入了这个赛道&#xff0c;另一方面&#xff0c;众所周知的原因&#xff0c;不管大厂还是小厂在经历寒冬之…...

大数据-178 Elasticsearch Query - Java API 索引操作 文档操作

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…...

PHP(一)从入门到放弃

参考文献&#xff1a;https://www.php.net/manual/zh/introduction.php PHP 是什么&#xff1f; PHP&#xff08;“PHP: Hypertext Preprocessor”&#xff0c;超文本预处理器的字母缩写&#xff09;是一种被广泛应用的开放源代码的多用途脚本语言&#xff0c;它可嵌入到 HTML…...

基于深度学习的生物启发的学习系统

基于深度学习的生物启发学习系统&#xff08;Biologically Inspired Learning Systems&#xff09;旨在借鉴生物大脑的结构和学习机制&#xff0c;设计出更高效、更灵活的人工智能系统。这类系统融合了生物神经科学的研究成果&#xff0c;通过模仿大脑中的学习模式、记忆过程和…...

10_实现readonly

在某些时候&#xff0c;我们希望定义一些数据是只读的&#xff0c;不允许被修改&#xff0c;从而实现对数据的保护&#xff0c;即为 readonly 只读本质上也是对数据对象的代理&#xff0c;我们同样可以基于之前实现的 createReactiveObject 函数来实现&#xff0c;可以为此函数…...

简单介绍$listeners

$listeners 它可以获取父组件传递过来的所有自定义函数&#xff0c;如下&#xff1a; // 父组件 <template><div class"a"><Child abab"handleAbab" acac"handleAcac"/></div> </template><script> impor…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

连锁超市冷库节能解决方案:如何实现超市降本增效

在连锁超市冷库运营中&#xff0c;高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术&#xff0c;实现年省电费15%-60%&#xff0c;且不改动原有装备、安装快捷、…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级

在互联网的快速发展中&#xff0c;高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司&#xff0c;近期做出了一个重大技术决策&#xff1a;弃用长期使用的 Nginx&#xff0c;转而采用其内部开发…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问&#xff1a;说说对 IP 数据报中 TTL 的理解&#xff1f;我们都知道&#xff0c;IP 数据报由首部和数据两部分组成&#xff0c;首部又分为两部分&#xff1a;固定部分和可变部分&#xff0c;共占 20 字节&#xff0c;而即将讨论的 TTL 就位于首…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...