三元损失(Triplet Loss)详解
文章目录
- 前言
- 一、三元损失的核心思想
- 二、数学公式
- 三、损失函数的解释
- 四、三元损失的优势
- 五、应用场景
前言
三元损失(Triplet Loss)是一种广泛应用于度量学习(Metric Learning)中的损失函数,尤其在人脸识别、图像检索等任务中表现优异。三元损失的基本思想是通过定义一个锚点样本(Anchor)、一个正样本(Positive)和一个负样本(Negative)来引导神经网络学习,使得在特征空间中锚点样本与正样本的距离小于锚点样本与负样本的距离。
一、三元损失的核心思想
对于一个样本三元组 (Anchor, Positive, Negative),三元损失的目标是:
最小化锚点与正样本之间的距离。
最大化锚点与负样本之间的距离,使得两者之间的距离至少大于一个设定的 margin(通常是一个超参数)。
这样做的目的是让同一类别的样本在特征空间中更加靠近,而不同类别的样本保持足够的距离,从而实现有效的分类或匹配。
二、数学公式
对于一个样本三元组 (Anchor, Positive, Negative)
,三元损失函数的定义为:
L t r i p l e t = max ( 0 , D ( f ( A ) , f ( P ) ) − D ( f
相关文章:
三元损失(Triplet Loss)详解
文章目录 前言一、三元损失的核心思想二、数学公式三、损失函数的解释四、三元损失的优势五、应用场景前言 三元损失(Triplet Loss)是一种广泛应用于度量学习(Metric Learning)中的损失函数,尤其在人脸识别、图像检索等任务中表现优异。三元损失的基本思想是通过定义一个…...

1. 解读DLT698.45-2017通信规约--预连接响应
国家电网有限公司企业标准,面向对象的用电信息数据交换协议DLT698.45-2017 为提高用电信息采集系统的业务适应性、采集效率、安全性和数据溯源性,规范用电信息数据交换协议的通信架构、数据链路层、应用层、接口类与对象标识,制定本标准。 …...

基于小波图像去噪的MATLAB实现
论文背景 数字图像处理(Digital Image Processing,DIP)是指用计算机辅助技术对图像信号进行处理的过程。数字图像处理最早出现于 20世纪50年代,随着过去几十年来计算机、网络技术和通信的快速发展,为信号处理这个学科领域的发展奠定了基础&a…...

[数据结构]栈的实现与应用
文章目录 一、引言二、栈的基本概念1、栈是什么2、栈的实现方式对比3、函数栈帧 三、栈的实现1、结构体定义2、初始化3、销毁4、显示5、数据操作 四、分析栈1、优点2、缺点 五、总结1、练习题2、源代码 一、引言 栈,作为一种基础且重要的数据结构,在计算…...

ESP32-C3 入门笔记04:gpio_key 按键 (ESP-IDF + VSCode)
1.GPIO简介 ESP32-C3是QFN32封装,GPIO引脚一共有22个,从GPIO0到GPIO21。 理论上,所有的IO都可以复用为任何外设功能,但有些引脚用作连接芯片内部FLASH或者外部FLASH功能时,官方不建议用作其它用途。 通过开发板的原…...

C语言(函数)—函数栈帧的创建和销毁
目录 前言 补充知识 一、函数线帧是什么? 二、函数线帧的实现(举例说明) 两数之和代码 编辑两数之和 汇编代码分析 执行第一条语句 执行第二条语句 执行第三条语句 执行第四、五、六条语句 执行第七条语句 执行第八、九、十条语句 执行第十…...

点餐小程序实战教程20广告管理
目录 1 创建数据源2 添加轮播容器3 创建变量4 绑定变量5 预览应用总结 一般餐厅需要有一些宣传,在我们的点餐页面可以在顶部加载广告位。广告主要是用轮播图的形式进行展示,本节我们介绍一下如果显示广告。 1 创建数据源 打开控制台,点击应用…...

市场上几个跨平台开发框架?
跨平台桌面应用开发框架是一种工具或框架,它允许开发者使用一种统一的代码库或语言来创建能够在多个操作系统上运行的桌面应用程序。传统上,开发者需要为每个操作系统编写不同的代码,使用不同的开发工具和语言。而跨平台桌面应用开发框架通过…...
同步和异步、引用、变量声明、全局变量
同步和异步 如果计算机足够快,任何资源的访问速度都像Cache一样,没有异步的必要。 编程语言的同步和异步 越早期的编程语言,支持语言级别的异步越欠缺。 JS提供某些操作的同步和异步函数,例如文件读取,fs.readFile和fs…...

2024年10月份实时获取地图边界数据方法,省市区县街道多级联动【附实时geoJson数据下载】
首先,来看下效果图 在线体验地址:https://geojson.hxkj.vip,并提供实时geoJson数据文件下载 可下载的数据包含省级geojson行政边界数据、市级geojson行政边界数据、区/县级geojson行政边界数据、省市区县街道行政编码四级联动数据࿰…...

@RequestMapping对不同参数的接收方式
1、简单参数 1、参数名与形参变量名相同,定义形参即可接收参数,且会自动进行类型转换。 RequestMapping("/simple")public String simpleParam(String name,int age){String username name;int userAge age;System.out.println(username&…...
机器学习_KNN(K近邻)算法_FaceBook_Location案例(附数据集下载链接)
Facebook_location_KNN 流程分析: 1.数据集获取(大型数据怎么获取? 放在电脑哪里? 算力怎么搞?) 2.基本数据处理(数据选取-确定特征值和目标值-分割数据集) 缩小数据范围 选择时间特征 去掉签到较少的地方 确定特征值和目标值 分割数据集 3.特征工程(特征预处理:标…...

【str_replace替换导致的绕过】
双写绕过 随便输入一个 usernameadmin&passwords 没有回显测试注入点 usernameadmin or 11%23&passwords 回显hello admin测试列数 usernameadmin order by 3%23&passwords测试回显位 usernameadmi union select 1,2,3%23&passwords 没有显示数据,推…...

如何用AI大模型提升挖洞速度
工具背景 越权漏洞在黑盒测试、SRC挖掘中几乎是必测的一项,但手工逐个测试越权漏洞往往会耗费大量时间,而自动化工具又存在大量误报, 基于此产生了AutorizePro, 那它是怎么提升效率一起来看看 AutorizePro 是一款专注于越权检测的 Burp 插件…...
两个数列问题
# 问题描述 给定长度分别为 n 和 m 的两个数列a[n]、b[m],和一个整数k。求|(a[i] - b[j])^2 - k^2|的最小值。 ## 输入格式 第一行有 2 个整数 n、m、k,分别表示数列 a、b 的长度,以及公式中的整数 k。 第二行有 n 个整数,表示…...

python中堆的用法
Python 堆(Headp) Python中堆是一种基于二叉树存储的数据结构。 主要应用场景: 对一个序列数据的操作基于排序的操作场景,例如序列数据基于最大值最小值进行的操作。 堆的数据结构: Python 中堆是一颗平衡二叉树&am…...

轮班管理新策略,提高效率与降低员工抱怨
良好轮班管理对企业关键,需提前计划、明确期望、保持灵活公平、加强沟通并利用轮班调度系统。ZohoPeople作为智能排班系统,提供轻松创建班次、自动更换、分配管理员、设置津贴及即时通知等功能,助力企业高效管理。 一、HR轮班管理的5大技巧 …...

spring-cloud-alibaba-nacos-config2023.0.1.*启动打印配置文件内容
**背景:**在开发测试过程中如果可以打印出配置文件的内容,方便确认配置是否准确;那么如何才可以打印出来呢; spring-cloud-alibaba-nacos-config 调整日志级别 logging:level:com.alibaba.cloud.nacos.configdata.NacosConfigD…...

数据结构:二叉树、堆
目录 一.树的概念 二、二叉树 1.二叉树的概念 2.特殊类型的二叉树 3.二叉树的性质 4.二叉树存储的结构 三、堆 1.堆的概念 2.堆的实现 Heap.h Heap.c 一.树的概念 注意,树的同一层中不能有关联,否侧就不是树了,就变成图了ÿ…...

hi3798mv100 linux 移植
# Linux开发环境搭建 ## uboot编译 1. 必须先安装gcc,要不然make 等命令无法使用 2. 配置arm 交叉编译链 # gcc sudo apt-get install gcc-9 gcc -v# 安装 Linaro gcc-arm-linux-gnueabihf,注意不是arm-linux-gnueabihf-gcc sudo apt-get install ar…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
React hook之useRef
React useRef 详解 useRef 是 React 提供的一个 Hook,用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途,下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

【Redis技术进阶之路】「原理分析系列开篇」分析客户端和服务端网络诵信交互实现(服务端执行命令请求的过程 - 初始化服务器)
服务端执行命令请求的过程 【专栏简介】【技术大纲】【专栏目标】【目标人群】1. Redis爱好者与社区成员2. 后端开发和系统架构师3. 计算机专业的本科生及研究生 初始化服务器1. 初始化服务器状态结构初始化RedisServer变量 2. 加载相关系统配置和用户配置参数定制化配置参数案…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...

JVM虚拟机:内存结构、垃圾回收、性能优化
1、JVM虚拟机的简介 Java 虚拟机(Java Virtual Machine 简称:JVM)是运行所有 Java 程序的抽象计算机,是 Java 语言的运行环境,实现了 Java 程序的跨平台特性。JVM 屏蔽了与具体操作系统平台相关的信息,使得 Java 程序只需生成在 JVM 上运行的目标代码(字节码),就可以…...
代码随想录刷题day30
1、零钱兑换II 给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。 请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0 。 假设每一种面额的硬币有无限个。 题目数据保证结果符合 32 位带…...

排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...