【Python技术】利用akshare定时获取股票实时价,低于5日线钉钉通知报警

今天看了下大盘,临时有个想法,我想知道某个股票回踩5日线的价格,如果实时价格低于5日线通过钉钉报警通知我。
说干就干,临时撸了下简单的代码,仅做演示。
1、计算5日线思路
很多券商软件的MA5价格是近5个交易日收盘的平均价, 其实对我来说,没什么鸟用。我需要的是强势股回踩5日线提醒,我自己设计的公式思路,根据股票code获取最近4个交易日收盘价 +当日开盘价,除以5,计算5日线价格。
def get_5day_average(stock_code):try:end_date = datetime.now().strftime('%Y%m%d')start_date = (datetime.now() - pd.Timedelta(days=10)).strftime('%Y%m%d')df = ak.stock_zh_a_hist(symbol=stock_code, start_date=start_date, end_date=end_date, adjust="")if len(df) < 5:return None, f"Error: Not enough data available for {stock_code}. Only {len(df)} days found."latest_open = df.iloc[-1]['开盘']previous_closes = df.iloc[-5:-1]['收盘'].tolist()five_day_values = previous_closes + [latest_open]five_day_average = sum(five_day_values) / 5return five_day_average, Noneexcept Exception as e:return None, f"Error occurred for {stock_code}: {str(e)}"
2、交易时间判断,上午9点半-11点半, 下午1点-3点
def is_trading_time():now = datetime.now().time()morning_start = time(9, 30)morning_end = time(11, 30)afternoon_start = time(13, 0)afternoon_end = time(15, 0)return (morning_start <= now <= morning_end) or (afternoon_start <= now <= afternoon_end)
3、利用akshare获取实时价格, 为了保证接口的正常顺利调用, 最好换个数据源。
real_time_data = ak.stock_zh_a_spot()
4、钉钉通知报警
钉钉机器人配置
DINGTALK_WEBHOOK = "https://oapi.dingtalk.com/robot/send?access_token=YOUR_ACCESS_TOKEN"
钉钉怎么玩,可以借助钉钉APP面对面建群,输入4个数字建一个单人群聊, 单人群里搞个 钉钉机器人就可以了。
完整代码见下方链接, csdn文章太容易被搬运了。有次刚写完一篇文章,转眼第二天我搜索资料,一模一样的文章就出现在其他地方了。
【Python技术】利用akshare定时获取股票实时价,低于5日线钉钉通知报警
相关文章:
【Python技术】利用akshare定时获取股票实时价,低于5日线钉钉通知报警
今天看了下大盘,临时有个想法,我想知道某个股票回踩5日线的价格,如果实时价格低于5日线通过钉钉报警通知我。 说干就干,临时撸了下简单的代码,仅做演示。 1、计算5日线思路 很多券商软件的MA5价格是近5个交易日收盘…...
LINUX1.2
1.一切都是一个文件 (硬盘) 2.系统小型 轻量型,300个包 3.避免令人困惑的用户界面 ------------------> 就是没有复杂的图形界面 4.不在乎后缀名,有没有都无所谓,不是通过后缀名来定义文件的类型(win…...
Proximal Distance Algorithm (近段距离算法)
文章目录 第一篇\section*{近端距离算法(Proximal Distance Algorithm)详解}\subsection*{1. MM原理(Majorization-Minimization Principle)}\subsection*{2. 近端距离算法(Proximal Distance Algorithm)}\…...
如何判断一个数是几位数与这个数是否为回文数并打印出其逆序数
1 问题 判断一个数是几位数与这个数是否为回文数并打印出其逆序数。 2 方法 先输入一个少于五位数的数用int的方法打出这个数的个十百千万的数字再用条件语句else-if来判断这个数是几位数,并打印其逆序数最后判断这个数是否为回文数,打印其数 通过实验、…...
Solon 之 STOMP
一、STOMP 简介 如果直接使用 WebSocket 会非常累,就像用 Socket 编写 Web 应用。没有高层级的交互协议,就需要我们定义应用间所发消息的语义,还需要确保连接的两端都能遵循这些语义。 如 HTTP 在 TCP 套接字之上添加了请求-响应模型层一样…...
在掌控板上搭建http服务器
在掌控板上搭建http服务器 打开Arduino IDE,并且已经添加了ESP32的支持库。以下是创建一个基本HTTP服务器的步骤: 包含必要的库: #include <WiFi.h> #include <WebServer.h>配置WiFi: 替换ssid和password为你的WiFi网…...
HCIA复习实验
实验要求 实验拓扑以及实验分析 第一步先划分网段 先对内网划分 192.168.1.0/24划分 192.168.1.0/26---骨干主线路 192.168.1.64/26---骨干备线路 ---192.168.1.128/25--vlan2 3汇总---便于减少路由表条目---在大型网络方便 192.168.1.128/26---vlan2 192.168.1.192/26---vla…...
生信软件39 - GATK最佳实践流程重构,提高17倍分析速度的LUSH流程
1. LUSH流程简介 基因组测序通常用于分子诊断、分期和预后,而大量测序数据在分析时间方面提出了挑战。 对于从FASTQ到VCF的整个流程,LUSH流程在非GVCF和GVCF模式下都大大降低了运行时间,30 X WGS数据耗时不到2 h,从BAM到VCF约需…...
c#编写的各类应用程序、类库的引用(黑白盒)
001 课程简介,C# 语言简介,开发环境准备 (yuque.com)https://www.yuque.com/yuejiangliu/dotnet/timothy-csharp-001 一个Solution里包含多个Project 一、见识 C# 编写的各类应用程序 二、类库的引用(黑/白盒引用) 1、黑盒引用&a…...
计算机网络考研笔记
...
用感性的方式浅要了解什么是AI 与 大模型
什么是人工智能(AI)? 人工智能(Artificial Intelligence,简称 AI)是指由人制造出来的具有一定智能的系统,能够理解和学习人类的行为,并在某些任务上模仿人类的智能行为。这些任务包…...
Linux文件的查找和打包以及压缩
文件的查找 文件查找的用处,在我们需要文件但却又不知道文件在哪里的时候 文件查找存在着三种类型的查找 1、which或whereis:查找命令的程序文件位置 2、locate:也是一种文件查找,但是基于数据库的查找 3、find:针…...
专题十四_哈希表_算法专题详细解答
目录 哈希表简介 1. 两数之和(easy) 解析: 解法一:暴力: 解法二:哈希O(N) 总结: 2. 判断是否互为字符重排(easy) 解析: 哈希: 总结&…...
C++源码生成·序章
文章目录 C源码生成序章1 概述1.1 前言1.2 Python 易用性简介 2 使用 python 生成 c 源码2.1 运行脚本2.2 结果 3 项目启动3.1 项目概述3.2 环境准备3.3 克隆仓库3.4 查看标签(Tags)3.4 根据标签拉取代码3.5 后续步骤 C源码生成序章 1 概述 1.1 前言 …...
Android中的MVP模式
MVP(Model-View-Presenter)架构在 Android 开发中是一种流行的架构模式,它将业务逻辑和 UI 代码分离,通过 Presenter 来处理用户的操作和界面更新。MVP 提高了代码的可维护性和测试性,特别是 Presenter 中的逻辑可以单…...
kebuadm部署k8s集群
官方文档: Installing kubeadm | Kubernetes 切记要关闭防⽕墙、selinux、禁用交换空间, cpu核⼼数⾄少为2 内存4G kubeadm部署k8s⾼可用集群的官方文档: Creating Highly Available Clusters with kubeadm | Kubernetes 你需要在每台…...
Unity3D学习FPS游戏(2)简单场景、玩家移动控制
前言:上一篇的时候,我们已经导入了官方fps的素材,并且对三维模型有了一定了解。接下来我们要构建一个简单的场景让玩家能够有地方移动,然后写一个简单的玩家移动控制。 简单场景和玩家移动 简单场景玩家移动控制玩家模型视野-摄像…...
网上的 AQS 文章让我很失望
一、AQS 很多人都没有讲明白 🤔 翻看了网上的 AQS(AbstractQueuedSynchronizer)文章,质量参差不齐,大多数都是在关键处跳过、含糊其词,美其名曰 “传播知识” 。 大多数都是进行大段的源码粘贴和注释&…...
滑动窗口子串
文章目录 滑动窗口一、无重复字符的最长子串二、找到字符串中所有字母异位词 子串三、和为 K 的子数组四、滑动窗口最大值五、最小覆盖子串 滑动窗口 一、无重复字符的最长子串 题目链接 (方法一:暴力枚举) (方法二ÿ…...
【windows11 提示“Microsoft Visual C++ Runtime Library Runtime Error】
windows11 提示“Microsoft Visual C++ Runtime Library Runtime Error” 问题描述解决方法郑重声明:本人原创博文,都是实战,均经过实际项目验证出货的 转载请标明出处:攻城狮2015 Platform: windows OS:windows11 问题描述 解决方法 下载VisualCppRedist_AIO_x86_x64.exe 安…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
MySQL 索引底层结构揭秘:B-Tree 与 B+Tree 的区别与应用
文章目录 一、背景知识:什么是 B-Tree 和 BTree? B-Tree(平衡多路查找树) BTree(B-Tree 的变种) 二、结构对比:一张图看懂 三、为什么 MySQL InnoDB 选择 BTree? 1. 范围查询更快 2…...
