掌握ElasticSearch(六):分析过程
文章目录
- 一、什么是分析
- 1. 字符过滤 (Character Filtering)
- 2. 分词 (Breaking into Tokens)
- 3. 词条过滤 (Token Filtering)
- 4. 词条索引 (Token Indexing)
- 二、内置分析器分类
- 1. 标准分析器 (Standard Analyzer)
- 2. 简单分析器 (Simple Analyzer)
- 3. 语言分析器 (Language Analyzers)
- 4. 关键字分析器 (Keyword Analyzer)
- 5. 模式分析器 (Pattern Analyzer)
- 6. 音译分析器 (Phonetic Analyzer)
- 7. 自定义分析器 (Custom Analyzer)
- 三、如何使用分析器
- 1. 在创建索引时使用分析器
- 示例
- 2. 在 ES 配置文件中指定全局的分析器
- 示例
- 3. 结合以上两种方法使用
- 示例
一、什么是分析
Elasticsearch 的分析过程是将文本数据转换成适合搜索的形式的关键步骤。这一过程主要包括四个阶段:字符过滤、分词、词条过滤和词条索引。
1. 字符过滤 (Character Filtering)
字符过滤是分析过程的第一步,它发生在文本被分词之前。字符过滤器的主要作用是对输入文本进行预处理,以去除或替换某些字符。这一步可以帮助改善后续分析的效果,尤其是在处理包含特殊字符或格式化内容(如 HTML 标签)的文本时尤为重要。
- 用途:例如,可以使用字符过滤器来删除文本中的 HTML 标签,或将某些字符转换为其他字符(比如将连字符转换为空格)。
- 实现:Elasticsearch 提供了一些内置的字符过滤器,如
html_strip
用于剥离 HTML 标签。此外,也可以编写自定义的字符过滤器来满足特定的需求。
2. 分词 (Breaking into Tokens)
分词是将文本切分为更小的单位,即词条(tokens)的过程。每个词条代表一个独立的搜索项。分词器的选择对最终的搜索结果影响很大。
- 分词器类型:
- 标准分词器:适用于多种语言,能够识别并分割大多数常见文本。
- 语言特定分词器:如中文分词器(如 IK 分词器或结巴分词器),能够更好地处理特定语言的文本。
- 模式分词器:允许使用正则表达式来自定义分词规则。
- 例子:假设有一个句子 “Elasticsearch is a powerful search engine”,标准分词器会将其分解为 [“Elasticsearch”, “is”, “a”, “powerful”, “search”, “engine”]。
3. 词条过滤 (Token Filtering)
分词后的词条会通过一系列的词条过滤器进行处理,以优化搜索性能和相关性。词条过滤器可以执行多种操作,包括但不限于:
- 小写转换:将所有词条转换为小写,以确保搜索时不区分大小写。
- 停用词移除:移除那些在搜索中通常不提供有用信息的常见词汇,如 “the”、“and” 等。
- 词干提取:将词条还原到其基本形式,例如将 “running” 转换为 “run”。
- 同义词扩展:将词条替换为一组相关的词条,以提高搜索的覆盖范围。
- 词形还原:将词条还原到其词典形式,与词干提取类似,但更精确。
4. 词条索引 (Token Indexing)
经过字符过滤、分词和词条过滤之后,最终的词条将被索引。索引过程涉及将词条及其元数据(如位置信息、频率等)存储在倒排索引中。倒排索引是一种数据结构,它允许快速查找包含特定词条的文档。
- 倒排索引结构:每个词条对应一个文档列表,列表中的每个元素表示该词条出现在哪个文档中以及出现的位置。
- 索引存储:词条和其元数据被高效地存储,以便于快速检索。
二、内置分析器分类
Elasticsearch 提供了多种内置的分析器,每种分析器都针对特定的使用场景进行了优化。这些内置分析器可以处理不同的语言和文本类型,帮助用户更有效地索引和搜索数据。下面详细介绍几种常用的内置分析器及其特点:
1. 标准分析器 (Standard Analyzer)
描述:这是 Elasticsearch 的默认分析器,适用于多种语言的通用文本分析。它使用标准分词器和标准词条过滤器。
分词器:
- 标准分词器:将文本拆分为单词,忽略标点符号和空白字符。
词条过滤器:
- 小写过滤器:将所有词条转换为小写。
- 停止词过滤器:移除常见的停用词(如 “the”、“is” 等)。
示例:
{"analyzer": {"standard": {"type": "standard"}}
}
2. 简单分析器 (Simple Analyzer)
描述:适用于简单的文本分析,主要用于英文。它使用简单分词器,将文本按非字母字符拆分,并将所有词条转换为小写。
分词器:
- 简单分词器:将文本按非字母字符拆分。
词条过滤器:
- 小写过滤器:将所有词条转换为小写。
示例:
{"analyzer": {"simple": {"type": "simple"}}
}
3. 语言分析器 (Language Analyzers)
描述:Elasticsearch 提供了多种语言特定的分析器,每种语言分析器都针对特定语言的语法和词汇进行了优化。
示例:
- 英语分析器 (
english
):- 分词器:标准分词器
- 词条过滤器:小写过滤器、英语停用词过滤器、英语词干提取过滤器
- 中文分析器 (
smartcn
):- 分词器:智能中文分词器
- 词条过滤器:小写过滤器
示例:
{"analyzer": {"english": {"type": "english"},"smartcn": {"type": "smartcn"}}
}
4. 关键字分析器 (Keyword Analyzer)
描述:不进行任何分析,直接将整个输入文本作为一个单一的词条。适用于不需要分词的字段,如 ID、标签等。
分词器:
- 关键字分词器:将整个输入文本作为一个单一的词条。
示例:
{"analyzer": {"keyword": {"type": "keyword"}}
}
5. 模式分析器 (Pattern Analyzer)
描述:使用正则表达式来分词。适用于需要自定义分词规则的场景。
分词器:
- 模式分词器:根据提供的正则表达式将文本拆分为词条。
示例:
{"analyzer": {"pattern_analyzer": {"type": "pattern","pattern": "\\W+","lowercase": true}}
}
6. 音译分析器 (Phonetic Analyzer)
描述:将词条转换为其音译形式,适用于模糊匹配和拼写纠正。常用算法包括 Soundex 和 Metaphone。
分词器:
- 标准分词器
词条过滤器:
- 音译过滤器:将词条转换为其音译形式。
示例:
{"analyzer": {"phonetic_analyzer": {"tokenizer": "standard","filter": ["soundex"]}}
}
7. 自定义分析器 (Custom Analyzer)
描述:用户可以根据需要组合不同的分词器、字符过滤器和词条过滤器来创建自定义分析器。
示例:
{"settings": {"analysis": {"analyzer": {"my_custom_analyzer": {"type": "custom","char_filter": ["html_strip"],"tokenizer": "standard","filter": ["lowercase", "stop", "snowball"]}}}}
}
三、如何使用分析器
我们可以在创建索引时使用分析器,也可以在ES配置文件中指定全局的analyzer;以及结合以上两种方法使用。
1. 在创建索引时使用分析器
在创建索引时,可以指定特定字段使用的分析器。这种方式提供了细粒度的控制,可以根据每个字段的具体需求选择不同的分析器。
示例
假设我们有一个博客文章的索引,其中包含标题和内容字段,我们可以分别为这两个字段指定不同的分析器。
PUT /blog
{"settings": {"analysis": {"analyzer": {"default_title_analyzer": {"type": "standard"},"default_content_analyzer": {"type": "english"}}}},"mappings": {"properties": {"title": {"type": "text","analyzer": "default_title_analyzer"},"content": {"type": "text","analyzer": "default_content_analyzer"}}}
}
在这个示例中:
default_title_analyzer
使用标准分析器。default_content_analyzer
使用英语分析器。title
字段使用default_title_analyzer
。content
字段使用default_content_analyzer
。
2. 在 ES 配置文件中指定全局的分析器
在 Elasticsearch 的配置文件(通常是 elasticsearch.yml
)中,可以设置全局的分析器。这种方式适用于希望在整个集群中统一使用某个分析器的情况。
示例
假设我们希望在集群中统一使用标准分析器作为默认分析器。
index.analysis.analyzer.default.type: standard
这样配置后,所有新创建的索引如果没有指定特定的分析器,都会使用标准分析器。
3. 结合以上两种方法使用
在实际应用中,可以结合以上两种方法,既在配置文件中设置全局的分析器,又在创建索引时为特定字段指定不同的分析器。这样可以灵活地满足不同场景的需求。
示例
假设我们在配置文件中设置全局的默认分析器为标准分析器,但在创建索引时为特定字段指定不同的分析器。
配置文件 elasticsearch.yml
:
index.analysis.analyzer.default.type: standard
创建索引时的配置:
PUT /blog
{"settings": {"analysis": {"analyzer": {"default_content_analyzer": {"type": "english"}}}},"mappings": {"properties": {"title": {"type": "text"},"content": {"type": "text","analyzer": "default_content_analyzer"}}}
}
在这个示例中:
- 全局默认分析器是标准分析器。
title
字段没有指定分析器,因此会使用全局的默认分析器(标准分析器)。content
字段指定了default_content_analyzer
,使用英语分析器。
相关文章:

掌握ElasticSearch(六):分析过程
文章目录 一、什么是分析1. 字符过滤 (Character Filtering)2. 分词 (Breaking into Tokens)3. 词条过滤 (Token Filtering)4. 词条索引 (Token Indexing) 二、内置分析器分类1. 标准分析器 (Standard Analyzer)2. 简单分析器 (Simple Analyzer)3. 语言分析器 (Language Analyz…...
【设计模式】使用python 实践框架设计
单一职责原则(SRP):一个类应该只有一个职责,意味着该类只应该有一个引起变化的原因。这使得代码更易于维护和理解。 开放封闭原则(OCP):软件实体(类、模块、函数等)应该…...
Apache paimon-CDC
CDC集成 paimon支持五种方式通过模式转化数据提取到paimon表中。添加的列会实时同步到Paimon表中 MySQL同步表:将MySQL中的一张或多张表同步到一张Paimon表中。MySQL同步数据库:将MySQL的整个数据库同步到一个Paimon数据库中。API同步表:将您的自定义DataStream输入同步到一…...
如何分析算法的执行效率和资源消耗
分析算法的执行效率和资源消耗可以从以下几个方面入手: 一、时间复杂度分析 定义和概念 时间复杂度是衡量算法执行时间随输入规模增长的速度的指标。它通常用大 O 符号表示,表示算法执行时间与输入规模之间的关系。例如,一个算法的时间复杂度为 O(n),表示该算法的执行时间…...

提示工程(Prompt Engineering)指南(进阶篇)
在 Prompt Engineering 的进阶阶段,我们着重关注提示的结构化、复杂任务的分解、反馈循环以及模型的高级特性利用。随着生成式 AI 技术的快速发展,Prompt Engineering 已经从基础的单一指令优化转向了更具系统性的设计思维,并应用于多轮对话、…...
音视频入门基础:FLV专题(19)——FFmpeg源码中,解码Audio Tag的AudioTagHeader,并提取AUDIODATA的实现
一、引言 从《音视频入门基础:FLV专题(18)——Audio Tag简介》可以知道,未加密的情况下,FLV文件中的一个Audio Tag Tag header AudioTagHeader AUDIODATA。本文讲述FFmpeg源码中是怎样解码Audio Tag的AudioTagHead…...

前端零基础入门到上班:【Day3】从零开始构建网页骨架HTML
HTML 基础入门:从零开始构建网页骨架 目录 1. 什么是 HTML?HTML 的核心作用 2. HTML 基本结构2.1 DOCTYPE 声明2.2 <html> 标签2.3 <head> 标签2.4 <body> 标签 3. HTML 常用标签详解3.1 标题标签3.2 段落和文本标签3.3 链接标签3.4 图…...
字符脱敏工具类
1、字符脱敏工具类 import lombok.extern.slf4j.Slf4j; import org.apache.commons.lang3.StringUtils;/*** 数据脱敏工具类** date 2024/10/30 13:44*/Slf4j public class DataDesensitizationUtils {public static final String STAR_1 "*";public static final …...
【jvm】jvm对象都分配在堆上吗
目录 1. 说明2. 堆上分配3. 栈上分配(逃逸分析和标量替换)4. 方法区分配5. 直接内存(非堆内存) 1. 说明 1.JVM的对象并不总是分配在堆上。2.堆是JVM用于存储对象实例的主要内存区域,存在一些特殊情况,对象…...
@AutoWired和 @Resource原理深度分析!
嗨,你好呀,我是猿java Autowired和Resource是 Java程序员经常用来实现依赖注入的两个注解,这篇文章,我们将详细分析这两个注解的工作原理、使用示例和它们之间的对比。 依赖注入概述 依赖注入是一种常见的设计模式,…...

C++设计模式创建型模式———原型模式
文章目录 一、引言二、原型模式三、总结 一、引言 与工厂模式相同,原型模式(Prototype)也是创建型模式。原型模式通过一个对象(原型对象)克隆出多个一模一样的对象。实际上,该模式与其说是一种设计模式&am…...

重学SpringBoot3-Spring WebFlux之SSE服务器发送事件
更多SpringBoot3内容请关注我的专栏:《SpringBoot3》 期待您的点赞👍收藏⭐评论✍ Spring WebFlux之SSE服务器发送事件 1. 什么是 SSE?2. Spring Boot 3 响应式编程与 SSE为什么选择响应式编程实现 SSE? 3. 实现 SSE 的基本步骤3.…...

YOLO即插即用模块---AgentAttention
Agent Attention: On the Integration of Softmax and Linear Attention 论文地址:https://arxiv.org/pdf/2312.08874 问题: 普遍使用的 Softmax 注意力机制在视觉 Transformer 模型中计算复杂度过高,限制了其在各种场景中的应用。 方法&a…...
探索开源语音识别的未来:高效利用先进的自动语音识别技术20241030
🚀 探索开源语音识别的未来:高效利用自动语音识别技术 🌟 引言 在数字化时代,语音识别技术正在引领人机交互的新潮流,为各行业带来了颠覆性的改变。开源的自动语音识别(ASR)系统,如…...

学习路之TP6--workman安装
一、安装 首先通过 composer 安装 composer require topthink/think-worker 报错: 分析:最新版本需要TP8,或装低版本的 composer require topthink/think-worker:^3.*安装后, 增加目录 vendor\workerman vendor\topthink\think-w…...

.NET内网实战:通过白名单文件反序列化漏洞绕过UAC
01阅读须知 此文所节选自小报童《.NET 内网实战攻防》专栏,主要内容有.NET在各个内网渗透阶段与Windows系统交互的方式和技巧,对内网和后渗透感兴趣的朋友们可以订阅该电子报刊,解锁更多的报刊内容。 02基本介绍 03原理分析 在渗透测试和红…...
AI Agents - 自动化项目:计划、评估和分配
Agents: Role 角色Goal 目标Backstory 背景故事 Tasks: Description 描述Expected Output 期望输出Agent 代理 Automated Project: Planning, Estimation, and Allocation Initial Imports 1.本地文件helper.py # Add your utilities or helper functions to…...
Git的.gitignore文件
一、各语言对应的.gitignore模板文件 项目地址:https://github.com/github/gitignore 二、.gitignore文件不生效 .gitignore文件只是ignore没有被追踪的文件,已被追踪的文件,要先删除缓存文件。 # 单个文件 git rm --cached file/path/to…...
网站安全,WAF网站保护暴力破解
雷池的核心功能 通过过滤和监控 Web 应用与互联网之间的 HTTP 流量,功能包括: SQL 注入保护:防止恶意 SQL 代码的注入,保护网站数据安全。跨站脚本攻击 (XSS):阻止攻击者在用户浏览器中执行恶意脚本。暴力破解防护&a…...

深度学习:梯度下降算法简介
梯度下降算法简介 梯度下降算法 我们思考这样一个问题,现在需要用一条直线来回归拟合这三个点,直线的方程是 y w ^ x b y \hat{w}x b yw^xb,我们假设斜率 w ^ \hat{w} w^是已知的,现在想要找到一个最好的截距 b b b。 一条…...

19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

大话软工笔记—需求分析概述
需求分析,就是要对需求调研收集到的资料信息逐个地进行拆分、研究,从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要,后续设计的依据主要来自于需求分析的成果,包括: 项目的目的…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...

ardupilot 开发环境eclipse 中import 缺少C++
目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...

基于Java+VUE+MariaDB实现(Web)仿小米商城
仿小米商城 环境安装 nodejs maven JDK11 运行 mvn clean install -DskipTestscd adminmvn spring-boot:runcd ../webmvn spring-boot:runcd ../xiaomi-store-admin-vuenpm installnpm run servecd ../xiaomi-store-vuenpm installnpm run serve 注意:运行前…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...