当前位置: 首页 > news >正文

数据可视化工具深入学习:Seaborn 与 Plotly 的详细教程

数据可视化工具深入学习:Seaborn 与 Plotly 的详细教程

数据可视化是数据分析中不可或缺的一部分,能够有效地帮助我们理解数据、发现模式和传达信息。在众多可视化工具中,Seaborn 和 Plotly 是两个非常流行且强大的库。本文将深入探讨这两个工具的使用方法、特点及应用示例,帮助你掌握数据可视化的技巧。

目录

  1. Seaborn 概述
    • 1.1 Seaborn 的特点
    • 1.2 安装 Seaborn
    • 1.3 Seaborn 基本用法
    • 1.4 Seaborn 示例
  2. Plotly 概述
    • 2.1 Plotly 的特点
    • 2.2 安装 Plotly
    • 2.3 Plotly 基本用法
    • 2.4 Plotly 示例
  3. Seaborn 与 Plotly 的对比
  4. 结论与未来展望

1. Seaborn 概述

1.1 Seaborn 的特点

Seaborn 是基于 Matplotlib 的高级数据可视化库,提供了更为美观和易用的接口。它专注于统计图表的绘制,能够帮助用户快速生成复杂的可视化效果。

  • 美观的默认样式:Seaborn 提供了一系列美观的主题和配色方案。
  • 内置数据集:Seaborn 内置了一些常用的数据集,方便用户进行快速测试。
  • 复杂的图表:支持绘制复杂的统计图表,如热图、成对图、分类图等。

1.2 安装 Seaborn

使用 pip 安装 Seaborn:

pip install seaborn

1.3 Seaborn 基本用法

导入库
import seaborn as sns
import matplotlib.pyplot as plt
加载数据集

Seaborn 提供了一些内置的数据集,可以通过 sns.load_dataset() 方法加载。例如,加载著名的鸢尾花数据集:

iris = sns.load_dataset('iris')
print(iris.head())
绘制基本图表

散点图

sns.scatterplot(data=iris, x='sepal_length', y='sepal_width', hue='species')
plt.title('Iris Sepal Length vs Width')
plt.show()

在这里插入图片描述

箱线图

sns.boxplot(data=iris, x='species', y='sepal_length')
plt.title('Iris Sepal Length by Species')
plt.show()

在这里插入图片描述

1.4 Seaborn 示例

热图

热图是展示矩阵数据的有效方式,通常用于展示相关性矩阵。

# 计算相关性矩阵
corr = iris.corr()# 绘制热图
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()

在这里插入图片描述

成对图

成对图用于展示多个变量之间的关系。

sns.pairplot(iris, hue='species')
plt.title('Pairplot of Iris Dataset')
plt.show()

在这里插入图片描述


2. Plotly 概述

2.1 Plotly 的特点

Plotly 是一个功能强大的交互式数据可视化库,支持多种图表类型和复杂的可视化效果。它的主要特点包括:

  • 交互性:用户可以与图表进行交互,如缩放、悬停等。
  • 多种输出格式:支持 HTML、Jupyter Notebook 和静态图像等多种输出格式。
  • 丰富的图表类型:支持 3D 图、地理图等多种图表类型。

2.2 安装 Plotly

使用 pip 安装 Plotly:

pip install plotly

2.3 Plotly 基本用法

导入库
import plotly.express as px
加载数据集

可以使用 Pandas 加载数据集,例如:

import pandas as pd# 从 CSV 文件加载数据
df = pd.read_csv('data.csv')
绘制基本图表

散点图

fig = px.scatter(df, x='sepal_length', y='sepal_width', color='species', title='Iris Sepal Length vs Width')
fig.show()

箱线图

fig = px.box(df, x='species', y='sepal_length', title='Iris Sepal Length by Species')
fig.show()

2.4 Plotly 示例

热图
import plotly.express as px# 计算相关性矩阵
corr = df.corr()# 绘制热图
fig = px.imshow(corr, title='Correlation Heatmap')
fig.show()
成对图

Plotly 也支持成对图的绘制,但通常需要使用 Plotly 的图表对象进行绘制。

import plotly.express as pxfig = px.scatter_matrix(df, dimensions=['sepal_length', 'sepal_width', 'petal_length', 'petal_width'], color='species')
fig.update_layout(title='Pairplot of Iris Dataset')
fig.show()

3. Seaborn 与 Plotly 的对比

特性SeabornPlotly
交互性不支持交互支持交互
图表类型主要用于统计图多种图表类型,包括 3D 图和地图
美观性默认美观高度自定义
学习曲线较简单可能稍复杂
输出格式静态图像HTML、Jupyter Notebook 等

4. 结论与未来展望

本文详细介绍了 Seaborn 和 Plotly 这两个强大的数据可视化工具。Seaborn 适合快速生成美观的统计图表,而 Plotly 则提供了丰富的交互性和多样的图表类型。根据项目需求选择合适的工具,能够有效提升数据可视化的效率和效果。

未来学习建议

  • 深入学习 Seaborn 和 Plotly 的高级功能,如自定义主题、动画效果等。
  • 尝试将 Seaborn 和 Plotly 结合使用,充分发挥它们各自的优势。
  • 参与数据可视化的开源项目,提升实战能力。

希望本文能为你的数据可视化之旅提供帮助!如有任何问题或建议,欢迎在评论区留言。

相关文章:

数据可视化工具深入学习:Seaborn 与 Plotly 的详细教程

数据可视化工具深入学习:Seaborn 与 Plotly 的详细教程 数据可视化是数据分析中不可或缺的一部分,能够有效地帮助我们理解数据、发现模式和传达信息。在众多可视化工具中,Seaborn 和 Plotly 是两个非常流行且强大的库。本文将深入探讨这两个…...

camera和lidar外参标定

雷达和相机的外参标定(外部参数标定)指的是确定两者之间的旋转和平移关系,使得它们的坐标系可以对齐。 文章目录 无目标标定livox_camera_calibdirect_visual_lidar_calibration 有目标标定velo2cam_calibration 无目标标定 livox_camera_ca…...

Redis慢查询分析优化

文章目录 一、定义二、慢查询参数配置三、慢查询日志四、排查步骤五、Redis变慢原因 一、定义 在Redis执行时耗时超过某个阈值的命令,称为慢查询。 慢查询日志帮助开发和运维人员定位系统存在的慢操作。慢查询日志就是系统在命令执行前后计算每条命令的执行时间&…...

ETL处理全流程

ETL代表提取Extraction、转换Transform、加载Load——这个过程涉及从各种来源提取数据,将其转换为一致的格式,并将其加载到目标数据库或数据仓库中。这是数据集成和分析的一个重要步骤,因为它确保数据准确、可靠,并准备好进一步处…...

美畅物联丨掌握Wireshark:GB28181协议报文分析实战指南

Wireshark,一款在网络安全与协议分析领域享有盛誉的网络嗅探器,凭借其强大的功能集、直观的图形用户界面以及广泛的跨平台兼容性,已成为众多开发者不可或缺的得力助手。其开源特性吸引了大量开发者的积极参与,不断推动其功能的完善…...

【python】OpenCV—WaterShed Algorithm

文章目录 1、功能描述2、代码实现3、完整代码4、效果展示5、涉及到的库函数5.1、cv2.pyrMeanShiftFiltering5.2、cv2.morphologyEx5.3、cv2.distanceTransform5.4、cv2.normalize5.5、cv2.watershed 6、更多例子7、参考 1、功能描述 基于分水岭算法对图片进行分割 分水岭分割…...

CSS flex布局- 最后一个元素占满剩余可用高度转载

效果图 技术要点 height父元素必须有一个设定的高度flex-grow: 1 flex 盒子模型内的该元素将会占据父容器中剩余的空间F12检查最后一行的元素,高度就已经改变了;...

Camp4-L1:XTuner 微调个人小助手认知

书生浦语大模型实战营第四期-XTuner 微调个人小助手认知 教程链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/README.md任务链接:https://github.com/InternLM/Tutorial/blob/camp4/docs/L1/XTuner/task.md提交链接:…...

Qt:语言家视图

1.一不小心将qt语言家点成这样 2.点击查看->视图 3.效果...

【Paper Note】利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位

利用Boundary-aware Attention边界感知注意力机制增强部分伪造音频定位 摘要核心模块什么是边界?什么是边界特征? 写作背景解决的问题 方法1. 特征提取使用预训练好的自监督学习模型进行前端特征提取Attentive poolingQ:为什么使用Attentive …...

海外共享奶牛牧场投资源码-理财金融源码-基金源码-共享经济源码

新版海外共享奶牛牧场投资源码/理财金融源码/基金源码/共享经济源码...

iOS静态库(.a)及资源文件的生成与使用详解(OC版本)

引言 iOS静态库(.a)及资源文件的生成与使用详解(Swift版本)_xcode 合并 .a文件-CSDN博客 在前面的博客中我们已经介绍了关于iOS静态库的生成步骤以及关于资源文件的处理,在本篇博客中我们将会以Objective-C为基础语言…...

Python自动化:关键词密度分析与搜索引擎优化

在数字营销领域,搜索引擎优化(SEO)是提升网站可见性和吸引有机流量的关键。关键词密度分析作为SEO的一个重要组成部分,可以帮助我们理解特定关键词在网页内容中的分布情况,从而优化网页内容以提高搜索引擎排名。本文将…...

苏州金龙新V系客车创新引领旅游出行未来

10月25日,为期三天的“2024第六届旅游出行大会”在风景秀丽的云南省丽江市落下帷幕。本次大会由中国旅游车船协会主办,全面展示了中国旅游出行行业最新发展动态和发展成就,为旅游行业带来全新发展动力。 在大会期间,备受瞩目的展车…...

linux:DNS服务

DNS简介: DNS系统使用的是网络的查询,那么自然需要有监听的port。DNS使用的是53端口, 在/etc/services(搜索domain)这个文件中能看到。通常DNS是以UDP这个较快速的数据传输协议来查 询的,但是没有查询到完…...

传奇架设好后创建不了行会,开区时点创建行会没反应的解决办法

传奇架设好后,测试了版本,发现行会创建不了,按道理说一般的版本在创建行会这里不会出错的,因为这是引擎自带的功能。 建立不了行会虽然说问题不大,但也不小,会严重影响玩家的游戏体验,玩游戏为的…...

【小白学机器学习28】 统计学脉络+ 总体+ 随机抽样方法

目录 参考书,学习书 0 统计学知识大致脉络 1 个体---抽样---整体 1.1 关于个体---抽样---整体,这个三段式关系 1.2 要明白,自然界的整体/母体是不可能被全部认识的 1.2.1 不要较真,如果是人为定义的一个整体,是可…...

安全研究 | 不同编程语言中 IP 地址分类的不一致性

作为一名安全研究人员,我分析了不同编程语言中 IP 地址分类 的行为。最近,我注意到一些有趣的不一致性,特别是在循环地址和私有 IP 地址的处理上。在这篇文章中,我将分享我对此问题的观察和见解。 设置 我检查了多种编程语言&am…...

小小的表盘还能玩出这么多花样?华为手表这次细节真的拉满

没想到小小的表盘还能玩出这么多花样?华为这次细节真的拉满!还有没有你不知道的神奇玩法? 情绪萌宠,心情状态抬腕可见 好心情就像生活馈赠的糖果,好的心情让我们遇到困难也不惧打击!HUAWEI WATCH GT 5情绪…...

trueNas 24.10 docker配置文件daemon.json无法修改(重启被覆盖)解决方案

前言 最近听说truenas的24.10版本开放docker容器解决方案放弃了原来难用的k3s,感觉非常巴适,就研究了一下,首先遇到无法迁移老系统应用问题比较好解决,使用sudo登录ssh临时修改daemon.json重启docker后进行docker start 容器即可…...

数字孪生,概念、应用与未来展望

随着科技的飞速发展,数字化已经成为各行各业的发展趋势,在这个过程中,数字孪生作为一种新兴的技术,逐渐引起了人们的关注,本文将对数字孪生的概念、应用以及未来展望进行详细介绍。 数字孪生的概念: 数字孪…...

Chromium HTML Input 类型Text 对应c++

一、文本域&#xff08;Text Fields&#xff09; 文本域通过 <input type"text"> 标签来设定&#xff0c;当用户要在表单中键入字母、数字等内容时&#xff0c;就会用到文本域。 <!DOCTYPE html> <html> <head> <meta charset"ut…...

SpringMvc参数传递

首先对于post请求汉字乱码需要进行过滤器配置 普通参数传递 直接传递 客户端传递的属性名与我的bean中的函数参数名相同 映射传递RequestParam("XXX") 在我们方法参数中定义一个与客户端属性名一致 并绑定参数 POJO实体类传递 嵌套POJO传递 数组likes参数传递…...

西安国际数字影像产业园:数字化建设赋能产业升级与拓展

西安国际数字影像产业园的数字化建设&#xff0c;在当前经济与科技迅猛发展的大背景下&#xff0c;已然成为提升园区管理效率、服务水平以及运营效果的关键趋势。随着信息技术日新月异的进步&#xff0c;数字化更是成为这座产业园转型升级的核心关键词。如今&#xff0c;西安国…...

linux线程池

线程池: * 一种线程使用模式。线程过多会带来调度开销&#xff0c;进而影响缓存局部性和整体性能。而线程池维护着多个线程&#xff0c;等待着 监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利 用&#xff0…...

PyTorch图像分类实战——基于ResNet18的RAF-DB情感识别(附完整代码和结果图)

PyTorch图像分类实战——基于ResNet18的RAF-DB情感识别&#xff08;附完整代码和结果图&#xff09; 关于作者 作者&#xff1a;小白熊 作者简介&#xff1a;精通python、matlab、c#语言&#xff0c;擅长机器学习&#xff0c;深度学习&#xff0c;机器视觉&#xff0c;目标检测…...

【OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments】阅读笔记

【OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments】阅读笔记 1. 论文概述Abstract1. Introduction2. Related work2.1 3D Occupancy Prediction2.2 Neural Radiance Fields2.3 Self-supervised Depth Estimation 3. Method3.1 Parameterized Occupanc…...

DDRPHY数字IC后端设计实现系列专题之后端设计导入,IO Ring设计

本章详细分析和论述了 LPDDR3 物理层接口模块的布图和布局规划的设计和实 现过程&#xff0c;包括设计环境的建立&#xff0c;布图规划包括模块尺寸的确定&#xff0c;IO 单元、宏单元以及 特殊单元的摆放。由于布图规划中的电源规划环节较为重要&#xff0c; 影响芯片的布线资…...

EDA --软件开发之路

之前一直在一家做数据处理的公司&#xff0c;从事c开发&#xff0c;公司业务稳定&#xff0c;项目有忙有闲&#xff0c;时而看下c&#xff0c;数据库&#xff0c;linux相关书籍&#xff0c;后面跳槽到了家eda公司&#xff0c;开始了一段eda开发之路。 eda 是 electric design …...

51c~目标检测~合集2

我自己的原文哦~ https://blog.51cto.com/whaosoft/12377509 一、总结 这里概述了基于深度学习的目标检测器的最新发展。同时&#xff0c;还提供了目标检测任务的基准数据集和评估指标的简要概述&#xff0c;以及在识别任务中使用的一些高性能基础架构&#xff0c;其还涵盖了…...

昆山做网站优化/广州今日新闻最新消息

WinForm:Windows Form,.Net中用来开发Windows窗口程序的技术&#xff0c;无论是之前学的控制台程序&#xff0c;还是后面要学的asp.net都是调用.net框架&#xff0c;因此所有知识点都是一样的。新建一个windows项目&#xff1a;Windows-->Windows窗体应用程序控件&#xff1…...

wordpress搬家后台还是老网站/厦门seo优化公司

定时器/计数器仿真 一、认识定时器/计数器 顾名思义,这些用于测量时间或生成准确的时间延迟。 微控制器还可以通过运行循环来生成/测量所需的时间延迟,但定时器/计数器将 CPU 从冗余和重复性任务中解放出来,使其能够为其他任务分配最大处理时间。 定时器只不过是一个简单…...

个人免费建站的网站/关键词优化排名费用

部分代码参考demo----《历史上的今天》。 感谢作者的分享&#xff0c;愿好人一生平安&#xff0c;虽然只有两个页面&#xff0c;但是通过这个示例让我学会了5中如何动态构建列表并填充数据&#xff0c;非常实用。 html部分&#xff1a; <body><header class"mui-…...

南冒网站建设制作推广公司/口碑营销理论

[url]http://my.oschina.net/hwxn/blog/615201[/url] 原理是使用css3的渐变背景&#xff0c;再将高设为分割线的高度 <!DOCTYPE html><html><head><style>.title{ position:relative; text-align:center;}.title:before, .title:after { content: &…...

网站右侧浮动导航/网络营销常用的方法有哪些

转载&#xff1a;果冻虾仁 提出疑问 当我们新建了一个Qt的widgets应用工程时。会自动生成一个框架&#xff0c;包含了几个文件。 其中有个mainwindow.h的头文件。就是你要操纵的UI主界面了。我们看看其中的一段代码&#xff1a; 1 class MainWindow : public QMainWindow 2 { …...

家在深圳我在房网信息论坛/百度竞价和优化的区别

1.返回操作系统类型的值为:posix,是Linux操作系统 值为nt,是windows操作系统 print(os.name)# posix print(Linux if os.name posix else Windows)# Linux2.操作系统的详细信息 info os.uname()print(info)#posix.uname_result(sysnameLinux, nodenamefoundation62.ilt.exa…...