【深入浅出】深入浅出transformer(附面试题)
本文的目的是为了帮助大家面试transformer,会结合我的面试经历以及看法去讲解transformer,并非完整的技术细致讲解,介意请移步。
结构
提到transformer网络模型,大家脑海中是否有这张图呢?

这是网络结构中经典的编解码网络结构。
编码器:由𝑁层编码层组成,每层对输入序列进行编码。
解码器:也由𝑁层解码层组成,并结合编码器输出生成最终输出序列。
编码器
位置编码
可以看到,输入到编码其中,首先经过了一个位置编码,这个位置编码是怎么设计的?有什么用?
看公式

- 有什么用?
众所周知,transformer结构依赖于自注意力机制,可以并行的计算整个序列的关系,但是他没有固有的顺序意识,这时候就需要位置编码了。 - 怎么设计的?
位置编码是一组具有固定模式的向量,其计算方式主要是基于正弦和余弦函数。句子长度为n,维度索引为i,总维度为d,通过这种方法确保不同位置的编码值是唯一的,并且在维度上保留平滑的变化。 - 作用?
周期性变化:正弦和余弦的周期性确保了相邻词的编码差异较小,随着位置增大变化逐渐减缓,适应长距离依赖。
平滑的位置信息:正弦和余弦的值随着位置的变化以非线性的方式增加,使模型能够学习词的相对位置信息和词序关系。
距离敏感性:较近的词之间的编码相似度较高,而远距离的词编码差异较大,便于捕捉长短期依赖。
注意力机制(attention)

输入内容经过位置编码后,ctrl +c,v复制成了三份完全一样的,作为QKV。如何理解QKV呢,通俗易懂的讲,Q为搜索关键字,K为搜索相关的分类,V为搜索出的结果,通过QK计算得到权重,然后V得到注意力的结果。
注意力机制的公式是这样的:

是不是向上面讲的QK*V的一个逻辑?那么又聪明的小朋友可能要问了,下面的这个dk是做什么的(高频考点)?
请参考我的这篇文章
【每日一问】transformer中的self-attention中为什么要除以dk?
讲完了注意力机制,那么多头是什么?
多头注意力机制
它将输入的注意力计算拆分为多个“头”,每个头分别计算一组不同的 Q、K、V 向量,并在每个头上并行计算注意力。然后将所有头的输出拼接在一起,再通过线性变换层生成最终的注意力输出。
太官方了?
别急,通俗易懂的讲:
同一份内容,经过不同的处理,能够得到不同的结果。多头注意力中,每个头是一注意力机制,独立的计算词与词之间的相似度,每个头关注不同的细节信息,帮助模型更全面地理解句子中的含义
举例我们有三个头:
- 第一个头可能关注词之间的空间关系,比如“猫”在哪里坐。
- 第二个头可能关注词之间的时间顺序,比如“先有猫再有沙发”。
- 第三个头可能关注词的动作关系,比如“猫是在沙发上‘坐’的”
多头注意力机制就像给模型多副“眼镜”,每副眼镜看到的角度不一样,最终合成的结果让模型能从多方位理解句子。
这样,我们讲完了编码器,接下来讲解解码器
解码器
可以从网络结构图中看出,解码器结构与编码器结构几乎是相同的。但是有两点不同。
-
masked是什么?
masked是transformer中的蒙版。对于解码器来说,不同于以往的时序模型RNN中的解码器,它能够阅读到句子的整个上下文内容,所以在解码器中,需要一些特殊的操作对句子进行处理。
例如在生成句子 “我要吃饭”,生成 “要 时,只能基于 “我” 来生成,而不能提前知道 “吃饭”,如果模型知道了后面的内容,不就相当于透题了吗?这样模型的损失函数无法计算,自然结果会很烂。 -
masked是如何做的?
在解码器的 masked self-attention 中,使用了一个“掩码矩阵”来阻止模型访问未来的信息。

在这个矩阵中,1 表示可以看到对应位置的词,0 表示不能看到。因此,在生成第三个词时,模型只能关注到第一个和第二个词,而不能看到第四个词。
他的效果如下所示:

通过masked机制,强制保证解码器不偷看未来的答案,确保结果每次都是基于已经生成的词语。
底层实现:其实这里masked的底层实现是给不是1的地方给了个很大的负数。还记得attention是怎么计算的吗?是不是有个softmax函数?在softmax函数中,x为很大的负数的时候,经过softmax处理后结果为0。这就是处理方式。 -
编码器对解码器的连线是什么?
其实就是多头注意力中的K和V啦。解码器传递过来的是Q,然后通过这种方式计算注意力机制。

这样来看是不是就好很多了呢?
讲解完啦,接下来看看这些面试题能不能答上来吧!
面试题
- 编码器中距离编码是什么?
- 讲解一下注意力机制。
- 多头注意力是什么?作用是什么?有什么优点?
- 编码器和解码器有什么不同?
- masked是什么机制?如何实现?
- 简单讲一下Transformer中的残差结构以及意义。
- Encoder端和Decoder端是如何进行交互的?
- 你还了解哪些关于位置编码的技术,各自的优缺点是什么?
相关文章:
【深入浅出】深入浅出transformer(附面试题)
本文的目的是为了帮助大家面试transformer,会结合我的面试经历以及看法去讲解transformer,并非完整的技术细致讲解,介意请移步。 结构 提到transformer网络模型,大家脑海中是否有这张图呢? 这是网络结构中经典的编解…...
苹果重大更新,macOS与iOS同时推出更新!功能真好用
前言 这几天,苹果更新了macOS和iOS的系统版本!macOS Sequoia 版本号15.1 iOS版本号18.1 小白更新设备系统的时间已经算比较晚的了,但好在更新得很及时!因为这次更新的功能很合小白的胃口啊!咱们先来看看本次更新了什么…...
刘艳兵-DBA016-在您的数据库中,SALES表存在于SH用户中,并且启用了统一审计。作为DBA,您成功执行了以下指令:
在您的数据库中,SALES表存在于SH用户中,并且启用了统一审计。作为DBA,您成功执行了以下指令: SQL> CREATE AUDIT POLICY sales_pol ACTIONS select on sh.sales; SQL> AUDIT POLICY sales_pol; 关于SALES_POL审计策略,哪个陈…...
力扣题目解析--整数反转
题目 给你一个 32 位的有符号整数 x ,返回将 x 中的数字部分反转后的结果。 如果反转后整数超过 32 位的有符号整数的范围 [−231, 231 − 1] ,就返回 0。 假设环境不允许存储 64 位整数(有符号或无符号)。 示例 1:…...
净水前置需要安装吗?
业主问净水前置需不需要安装?是必须安装吗?这个问题其实很难回答,如果说非要安装,有可能客户会感觉我们在这上面要挣钱, 有很多业主没有安装家里用水也没有问题,如果说不需要安装,现在…...
在深度学习研究方向有哪些创新点
以下是深度学习研究方向的一些创新点: 一、模型架构创新 Transformer架构及其扩展 自注意力机制 Transformer架构摒弃了传统的卷积神经网络(CNN)和循环神经网络(RNN)中的卷积和循环结构,引入了自注意力机…...
YOLOv11改进策略【卷积层】| 2024最新轻量级自适应提取模块 LAE 即插即用 保留局部信息和全局信息
一、本文介绍 本文记录的是利用轻量级自适应提取模块(LAE)模块优化YOLOv11的目标检测网络模型。LAE (Lightweight Adaptive Extraction) 在减少参数和计算成本的同时,能够提取更丰富语义信息的特征,克服了传统卷积方法难以捕捉全局信息的问题,并能更好地提取ROI特征。本文将…...
工作转型与个人突破提升:如何在社会浪潮中激流勇进
文章目录 一、写在前面二、技术人的迷茫三、做好项目经理其实很难四、从纯技术者转型为管理者面临的事五、最重要的技能【重磅推荐!免费简单内网穿透神器!支持linuxwindows】 一、写在前面 近期工作变动,虽然说对于开发者而言,工…...
mongodb:增删改查和特殊查询符号手册
前言 最近考虑开发游戏,网上推荐使用非关系数据库mongodb,因此浅尝了一番,并将一些语句和符号记录在这里。 相对于mysql、oracle这些关系型数据库,基于json文档的mongodb在很多地方都与之大不相同(可以类比为TCP握手连…...
你的Mac book多久没有清洁键盘屏幕了,Mac清洁好帮手来了
你的Mac book键盘使用时间长了不会打油吗,你的屏幕使用久了不会沾灰吗,那你还不清洁一下 你不清洁的原因,是怕清洁键盘误触发吗,还是怕屏幕擦不干净白擦,还是觉得每次都要睡眠或关机再清洁很麻烦 Cleaner是Mac的清洁…...
ANA基因组数据库(ANAgdb)
ANA进化阶由早期发育的被子植物谱系组成,包括无油樟目(Amborellales)、睡莲目(Nymphaeales)和木兰藤目(Austrobaileyales),在进化上具有重要地位。 ANA基因组数据库(ANA…...
leetcode 704 二分查找
704. 二分查找 已解答 简单 相关标签 相关企业 给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。 示例 1: 输入: nu…...
Vue学习笔记(十一)
一. Promise 1. 异步 异步:则是将耗时很长的A交付的工作交给系统之后,就去继续做B交付的工作,等到系统完成了前面的工作之后,再通过回调或者事件,继续做A剩下的工作。AB工作的完成顺序,和交付他们的时间顺…...
ABAP进阶学习1:动态内表1-通过系统表LVC_T_FCAT类型定义内表
动态内表1-通过系统表LVC_T_FCAT类型定义内表 如果对你有帮助,点个关注收藏吧~ 做BW做久了,突然对abap有了探索欲,开始进一步学习abap了,以后这个系列会逐步更新,欢迎小伙伴点个关注一起学习,我学习的方法…...
【Vispy库】一个用于高性能交互式2D/3D数据可视化库 Python库
Vispy库 1、你好,Vispy!2、安装Vispy,轻松上手3、案例一:绘制简单的2D图形4、案例二:3D图形的绘制5、案例三:大规模数据的可视化6、结语 1、你好,Vispy! Vispy是一个用于Python的高…...
为什么 C 语言数组是从 0 开始计数的?
C 语言等大多数编程语言的数组从 0 开始而不从 1 开始,有两个原因: 第一:地址计算更方便 C 语言从 0 开始的话,array[i] 的地址就正好是: (array i) 如果是从 1 开始的话,就是 (array i - 1) 多一次计…...
matlab线性度计算程序
matlab线性度计算程序 环境 matlab2023a ads2020 原理 其中f(v)是曲线,fmax是f(v)的最大值,fmin是f(v)的最小值,vmax为fmax对应v值,vmin为fmin对应v值。 L∆fmax/(fmax-fmin) (1) ∆fmaxmax[f(v)-[fmin-K*(v-vmin)]] (2) K(…...
为什么NMOS管比PMOS管更受欢迎?
NMOS在实际应用中为何比PMOS要更受欢迎。本文将从导电沟道、电子迁移率和器件速度等多个方面来展开讲解。 首先是在性能方面考虑: 与NMOS管驱动能力相同的一个PMOS管,其器件面积可能是NMOS管的2~3倍,然而器件面积会影响导通电阻…...
【论文复现】短期电力负荷
作者主页: 七七的个人主页 文章收录专栏: 论文复现 欢迎大家点赞 👍 收藏 ⭐ 加关注哦!💖💖 短期电力负荷 论文发表问题背景一. 基本问题二. 本论文发现的问题 对于论文发现问题的解决方案:复现…...
pytest脚本常用的执行命令
pytest脚本常用的执行命令 一、一般执行的脚本,执行.py文件整个脚本二、执行.py文件脚本中的一个模块三、执行脚本,执行.py文件整个脚本,或则一个模块,查看对应的日志信息3.1.py文件执行allure的脚本3.2去dos框下去执行对应的脚本…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
【分享】推荐一些办公小工具
1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由:大部分的转换软件需要收费,要么功能不齐全,而开会员又用不了几次浪费钱,借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
