【玉米叶部病害识别】Python+深度学习+人工智能+图像识别+CNN卷积神经网络算法+TensorFlow
一、介绍
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集(‘矮花叶病’, ‘健康’, ‘灰斑病一般’, ‘灰斑病严重’, ‘锈病一般’, ‘锈病严重’, ‘叶斑病一般’, ‘叶斑病严重’),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
二、系统效果图片展示



三、演示视频 and 完整代码 and 远程安装
地址:https://www.yuque.com/ziwu/yygu3z/wkzfondcbgz2zg6h
四、卷积神经网络算法介绍
卷积神经网络(CNN)在图像识别中表现出几个关键特点:
-
局部连接:CNN通过局部感受野捕捉图像的局部特征,这模仿了人类视觉系统的处理方式,使得网络能够有效地识别图像中的局部模式。
-
参数共享:在卷积层中,相同的卷积核(滤波器)在整个输入图像上滑动,共享权重,这大大减少了模型参数,提高了训练效率。
-
平移不变性:由于卷积操作的特性,CNN能够识别出在不同位置出现的相同特征,这使得模型对于图像中对象的位置变化具有一定的鲁棒性。
-
多层次特征提取:CNN通过多层结构逐步提取从简单到复杂的特征,低层可能识别边缘和纹理,高层则可能识别更复杂的形状和对象。
-
自动特征工程:CNN能够自动从原始图像数据中学习特征,减少了手动特征提取的工作量。
-
适用于大规模数据集:CNN在大规模图像数据集上表现良好,能够学习到丰富的特征表示。
下面是一个简单的CNN代码示例,使用Python的Keras库实现:
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense# 构建一个简单的CNN模型
model = Sequential()
# 添加第一个卷积层,32个3x3的卷积核,使用ReLU激活函数
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(64, 64, 3)))
# 添加池化层,减少参数数量,提取特征
model.add(MaxPooling2D(pool_size=(2, 2)))
# 添加第二个卷积层,64个3x3的卷积核
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
# 展平层,将多维输出一维化,以便输入到全连接层
model.add(Flatten())
# 添加全连接层,10个输出节点对应10个类别
model.add(Dense(10, activation='softmax'))# 编译模型,使用adam优化器和交叉熵损失函数
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])# 模型摘要
model.summary()
这段代码定义了一个简单的CNN模型,包含两个卷积层和池化层,以及一个全连接层用于分类。模型用于处理64x64像素的彩色图像,并预测10个不同的类别。
相关文章:
【玉米叶部病害识别】Python+深度学习+人工智能+图像识别+CNN卷积神经网络算法+TensorFlow
一、介绍 玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集(‘矮花叶病’, ‘健康’, ‘灰斑病一般’, ‘灰斑病严重’, ‘锈病一般’, ‘锈病严重’, ‘叶斑病一般’, ‘叶斑病严重’&#x…...
【设计模式】如何用C++实现依赖倒置
【设计模式】如何用C实现依赖倒置 一、什么是依赖倒置? 依赖倒置原则(Dependency Inversion Principle,DIP)是SOLID面向对象设计原则中的一项。它的核心思想是: 高层模块不应该依赖于低层模块,两者都应该…...
使用onnxruntime-web 运行yolov8-nano推理
ONNX(Open Neural Network Exchange)模型具有以下两个特点促成了我们可以使用onnxruntime-web 直接在web端上运行推理模型,为了让这个推理更直观,我选择了试验下yolov8 识别预览图片: 1. 跨平台兼容性 ONNX 是一种开…...
Gin框架html/vue前端使用hls.js播放/点播m3u8(hls)格式视频
说明 在web应用开发时遇到在线播放m3u8格式视频,由于m3u8是多分片视频,原生video标签无法直接播放,所以需要js对m3u8处理才能播放,网上有很多插件,这里我选择最近简单方法hls.js播放,引入一个js文件即可。…...
HarmonyOS 私仓搭建
1. HarmonyOS 私仓搭建 私仓搭建文档:https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-ohpm-repo-quickstart-V5 发布共享包[https://developer.huawei.com/consumer/cn/doc/harmonyos-guides-V5/ide-har-publish-0000001597973129-V5]…...
Mybatis学习笔记(二)
八、多表联合查询 (一) 多表联合查询概述 在开发过程中单表查询不能满足项目需求分析功能,对于复杂业务来讲,关联的表有几张,甚至几十张并且表与表之间的关系相当复杂。为了能够实业复杂功能业务,就必须进行多表查询,…...
Google“Big Sleep“人工智能项目发现真实软件漏洞
据Google研究人员称,该公司的一个人工智能项目足够聪明,能够自行发现现实世界中的软件漏洞;Google的人工智能项目最近在开源数据库引擎 SQLite 中发现了一个之前未知的可利用漏洞。 该公司随后在正式软件发布之前报告了这一漏洞,这…...
npm入门教程5:package.json
一、package.json 文件的作用 依赖管理:列出项目所依赖的包(库)及其版本,便于其他开发者或自动化工具快速安装和更新这些依赖。元数据描述:提供项目的描述、作者、许可证等元信息,有助于项目的管理和维护。…...
docker-高级(待补图)
文章目录 数据卷(Volume)介绍查看方法删除方法绑定方法匿名绑定具名绑定Bind Mount 数据卷管理 网络bridge(桥接模式 默认)HOST(主机模式)Nonecontainer(指定一个容器进行关联网络共享)自定义(推荐)docker network 命令创建网络docker network create 实例展示-自定义实例展示-…...
Qt 文件目录操作
Qt 文件目录操作 QDir 类提供访问系统目录结构 QDir 类提供对目录结构及其内容的访问。QDir 用于操作路径名、访问有关路径和文件的信息以及操作底层文件系统。它还可以用于访问 Qt 的资源系统。 Qt 使用“/”作为通用目录分隔符,与“/”在 URL 中用作路径分隔符…...
Pandas 数据清洗
1.数据清洗定义 数据清洗是对一些没有用的数据进行处理的过程。很多数据集存在数据缺失、数据格式错误、错误数据或重复数据的情况,如果要使数据分析更加准确,就需要对这些没有用的数据进行处理。 2.清洗空值 DataFrame.dropna(axis0, howany, threshN…...
IO学习笔记
当前需求,希望进行游戏可以保存游戏进度,可以将游戏的进度保存到一个文本文件,每一次打完游戏更新文本内容,下一次打游戏读取游戏进度,这里就涉及到两个知识IO流和File的知识。 File类 概述 java.io.File 类是文件…...
汇编练习-1
1、要求 练习要求引自《汇编语言-第4版》实验10.3(P209页) -编程,将data段中的数据,以10进制的形式显示出来 data segment dw 123,12666,1,8,3,38 data ends 2、实现代码(可惜没找到csdn对8086汇编显示方式) assume cs:codedata segmentdw 16 dup(0) ;除…...
初识二叉树( 二)
初识二叉树 二 实现链式结构二叉树前中后序遍历遍历规则代码实现 结点个数以及高度等层序遍历判断是否为完全二叉树 实现链式结构二叉树 ⽤链表来表示⼀棵二叉树,即用链来指示元素的逻辑关系。通常的方法是链表中每个结点由三个域组成,数据域和左右指针…...
AcWing1077-cnblog
问题背景 给定一个树形结构的图,每个节点代表一个地点,每个节点有一个守卫的代价。我们希望以最低的代价在树的节点上放置守卫,使得整棵树的所有节点都被监控。可以通过三种方式覆盖一个节点: 由父节点监控。由子节点监控。自己…...
五、SpringBoot3实战(1)
一、SpringBoot3介绍 1.1 SpringBoot3简介 SpringBoot版本:3.0.5 https://docs.spring.io/spring-boot/docs/current/reference/html/getting-started.html#getting-started.introducing-spring-boot 到目前为止,你已经学习了多种配置Spring程序的方式…...
练习LabVIEW第三十三题
学习目标: 刚学了LabVIEW,在网上找了些题,练习一下LabVIEW,有不对不好不足的地方欢迎指正! 第三十三题: 用labview编写一个判断素数的程序 开始编写: LabVIEW判断素数,首先要搞…...
如何在服务器端对PDF和图像进行OCR处理
介绍 今天我想和大家分享一个我在研究技术资料时发现的很好玩的东西——Tesseract。这不仅仅是一个普通的库,而是一个用C语言编写的OCR神器,能够识别一大堆不同国家的语言。我一直在寻找能够处理各种文档的工具,而Tesseract就像是给了我一把…...
Windows 下实验视频降噪算法 MeshFlow 详细教程
MeshFlow视频降噪算法 Meshflow 视频降噪算法来自于 2017 年电子科技大学一篇高质量论文。 该论文提出了一个新的运动模型MeshFlow,它是一个空间平滑的稀疏运动场 (spatially smooth sparse motion field),其运动矢量 (motion vectors) 仅在网格顶点 (m…...
Python入门:如何正确的控制Python异步并发量(制并发量的关键技巧与易错点解析)
文章目录 📖 介绍 📖🏡 演示环境 🏡📒 异步并发量控制 📒📝 Python异步并发简介📝 为什么要限制并发量🎈 资源管理🎈 服务稳定性📝 新手容易犯的错误🎈 忽略并发量限制🎈 错误设置并发量📝 设置并发量要注意的事情🎈 了解任务类型🎈 考虑系统资…...
【大模型RAG】拍照搜题技术架构速览:三层管道、两级检索、兜底大模型
摘要 拍照搜题系统采用“三层管道(多模态 OCR → 语义检索 → 答案渲染)、两级检索(倒排 BM25 向量 HNSW)并以大语言模型兜底”的整体框架: 多模态 OCR 层 将题目图片经过超分、去噪、倾斜校正后,分别用…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
MFC内存泄露
1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...
23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
使用分级同态加密防御梯度泄漏
抽象 联邦学习 (FL) 支持跨分布式客户端进行协作模型训练,而无需共享原始数据,这使其成为在互联和自动驾驶汽车 (CAV) 等领域保护隐私的机器学习的一种很有前途的方法。然而,最近的研究表明&…...
pam_env.so模块配置解析
在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...
苍穹外卖--缓存菜品
1.问题说明 用户端小程序展示的菜品数据都是通过查询数据库获得,如果用户端访问量比较大,数据库访问压力随之增大 2.实现思路 通过Redis来缓存菜品数据,减少数据库查询操作。 缓存逻辑分析: ①每个分类下的菜品保持一份缓存数据…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
