《高频电子线路》—— 电容三端LC振荡器
文章内容来源于【中国大学MOOC 华中科技大学通信(高频)电子线路精品公开课】,此篇文章仅作为笔记分享。
电容三端LC振荡器

基本原理(考毕兹电路)

- 反馈电压从C2上取得,作为输入电压,形成正反馈,可以维持振荡。
- 反馈电压Vf是从电容上分压取得的,所以叫做电容反馈的三端式振荡器。
优缺点

振荡频率

- 振荡频率由电感和电容决定(由电感看进去,电容是串联的)。
- 反馈系数就是两个电容上面的分压比。反馈系数用电容容抗乘上电流然后相比,电流相同消掉了,C在分母所以比值倒过来了
- 调整电容C1和C2来改变振荡频率的话,会改变反馈系数。
- 解决:可以通过在电感两端并联一个可变电容,在调整频率的时候,只要调节并联在电感两端的可变电容就行。
小结

越往下,三端式振荡器的性能越好。
改进型电容三端LC振荡器
串联改进电容三端式振荡器

基本原理(克拉泼电路)

在电容三端振荡器改进的地方,就是加入了C3,并且C3远小于C1和C2。
振荡频率

振荡频率由C1、C2和C3共同决定且约等于只由C3决定;而反馈系数F只由C1和C2决定。由此可以看到调整振荡频率和调整反馈系数,可以互不影响。
稳定性
主要通过接入系数p来分析,就是分析晶体管的输入输出电容对于振荡回路是否影响比较大。

- 以发射结的电容Cbe为例,计算出其接入系数pbe(分子部分是电容串联,由于C3远小于C1和C2,故电容串联后约等于C3),因此C3远小于C1和C2,所以接入系数非常小,发射结电容Cbe等效到谐振回路两端的电容值就非常小,对振荡频率影响也非常小。
- 由上可以知道,发射结电容Cce对振荡频率的影响也非常小。
- 正是因为C3的引入,使得接入系数变小,故管子对谐振回路的影响也变小了。
优缺点

波段系数 = 最大输出频率 / 最小输出频率
并联改进型电容三端式振荡器

基本原理(西勒电路)
并联改进型电容三端是基于串联改进型电容三端所改进的,所以也要保证有串联型的优点。

如果有电路也满足这样一种形式,但并不满足C3远小于C1和C2,那么这样的电路也不能够被叫做并联改进型的电容三端,只能叫做一般的电容三端LC振荡器。
振荡频率

关键因素还是C3远小于C1和C2,所以并联改进型首先是串联改进型的改进。
C3的选择

C3过小,那么反馈也会相对较小。
优缺点

并联型电容三端的优点就是改进了串联型电容三端的缺点。
小结

可以看到,它们的性能是逐渐增高的,而且具有本质的差别,因此在判断高频振荡的类型的时候,需要精确定位,不能把并联型改进电容三端称之为电容三端,因为其性能差别很大。
相关文章:
《高频电子线路》—— 电容三端LC振荡器
文章内容来源于【中国大学MOOC 华中科技大学通信(高频)电子线路精品公开课】,此篇文章仅作为笔记分享。 电容三端LC振荡器 基本原理(考毕兹电路) 反馈电压从C2上取得,作为输入电压,形成正反馈&a…...
leetcode35.搜索插入位置
1)题目描述: 2)本题要求使用 时间复杂度O(log n)的算法,这里使用二分查找的方法,这道题本身不复杂,但是,在使用递归调用时,笔者经常把递归结束的边界搞错,这里给出几版代…...
Redis全系列学习基础篇之位图(bitmap)常用命令的解析
文章目录 描述常用命令及解析常用命令解析 应用场景统计不确定时间周期内用户登录情况思路分析实现 统计某一特定时间内活跃用户(登录一次即算活跃)的数量思路分析与实现 描述 bitmap是redis封装的用于针对位(bit)的操作,其特点是计算效率高,占用空间少,常被用来统计…...
Copilot功能
Copilot 1、简介:Copilot是由GitHub与OpenAI共同开发的一款AI编程助手,旨在帮助开发者提高工作效率,改善代码质量。 2、主要功能包括: 1.代码补全:Copilot可以在开发者编写代码时提供代码建议,包括函数、循…...
《GBDT 算法的原理推导》 11-13初始化模型 公式解析
本文是将文章《GBDT 算法的原理推导》中的公式单独拿出来做一个详细的解析,便于初学者更好的理解。 公式(11-13)是GBDT算法的第一步,它描述了如何初始化模型。公式如下: f 0 ( x ) arg min c ∑ i 1 N L ( y i , c ) f_0(x) \arg \m…...
# Easysearch 与 LLM 融合打造高效智能问答系统
LangChain通过提供统一的抽象层和丰富的工具,极大地简化了LLM应用程序的开发过程,使得开发者能够更加专注于业务逻辑。RAG技术则通过索引和检索生成两步流程,利用最新数据或私有数据作为背景信息来增强大模型的推理能力。然而,对于…...
本地可以插入表记录,生产不能插入表记录
先说解决方案: 切面没有注入容器,在切面这加上Component详情: 大致是这样一个方法,本地运行会插入数据到sys_log表,但部署到服务器上就不会插入,而服务部署三年多了,一个表一直是空的居然没人…...
11.Three.js使用indexeddb前端缓存模型优化前端加载效率
11.Three.js使用indexeddb前端缓存模型优化前端加载效率 1.简述 在使用Three.js做数字孪生应用场景时,我们常常需要用到大量模型或数据。在访问我们的数字孪生应用时,每次刷新都需要从web端进行请求大量的模型数据或其他渲染数据等等,会极大…...
功能测试:方法、流程与工具介绍
功能测试是对产品的各功能进行验证的一种测试方法,旨在确保软件以期望的方式运行并满足设计需求。以下是对功能测试的详细解释: 一、定义与目的 定义:功能测试(Functional Testing),也称为行为测试&#…...
【Orange Pi 5 Linux 5.x 内核编程】-设备驱动中的sysfs
设备驱动中的sysfs 文章目录 设备驱动中的sysfs1、sysfs介绍2、内核对象(kobject)介绍3、设备驱动中的SysFS31 在/sys中创建目录3.2 创建sysfs文件3.2.1 创建属性3.2.2 创建sysfs文件4、驱动程序实现5、驱动验证1、sysfs介绍 sysfs是内核导出的虚拟文件系统,类似于/proc。sys…...
微信小程序-全局数据共享/页面间通信
一.全局数据共享 声明全局的变量,在app.js文件里 App({//全局共享的数据globalData:{token:},//设置全局数据setToken(token){this.globalData.tokentoken}})使用 getApp() 获取全局App实例 //返回全局唯一的APP实例 const appInstancegetApp()Page({login(){con…...
java计算机毕设课设—Java聊天室(附源码、文章、相关截图、部署视频)
这是什么系统? 资源获取方式再最下方 java计算机毕设课设—Java聊天室(附源码、文章、相关截图、部署视频) Java聊天室系统是一个基于Java语言开发的在线即时通讯平台,旨在为用户提供一个简单、易用的实时交流环境。该系统支持多用户同时在线交流&…...
图像识别基础认识
import numpy as np import pandas as pd import matplotlib.pyplot as plt import cv2 %matplotlib inline读取图像 img = cv2.imread(shuzi.png) # 显示图像 cv2.imshow(shuzi, img) # 设置窗口大小 #cv2.resizeWindow(shuzi, 800, 600) # 设置宽为800,高为600 cv2.waitKe…...
使用 OpenCV 读取和显示图像与视频
概述 OpenCV 是一个强大的计算机视觉库,广泛应用于图像处理和视频处理等领域。本文将详细介绍如何使用 OpenCV 在 Python 中读取和显示图像以及视频,并通过具体的代码示例来展示整个过程。 环境准备 在开始之前,请确保已经安装了 OpenCV 库…...
【1】Elasticsearch 30分钟快速入门
文章目录 一、Elasticsearch 基本概念及工作原理(一)基本概念(二)工作原理二、Elasticsearch 原生 RESTful 方式的增删改查(一)创建索引(二)插入文档(三)查询文档(四)更新文档(五)删除文档(六)删除索引三、Python SDK 实现增删改查(一)安装 Elasticsearch Py…...
教材管理系统设计与实现
教材管理系统设计与实现 1. 系统概述 教材管理系统是一个基于PHP和SQL的Web应用程序,旨在为学校提供一个高效的教材管理平台。该系统可以帮助管理员录入教材信息、教师查询和申请教材、学生查询教材信息,提高教材管理的效率和透明度。 2. 技术栈 前端…...
软考(中级-软件设计师)数据库篇(1101)
第6章 数据库系统基础知识 一、基本概念 1、数据库 数据库(Database ,DB)是指长期存储在计算机内的、有组织的、可共享的数据集合。数据库中的数据按一定的数据模型组织、描述和存储,具有较小的冗余度、较高的数据独立性和扩展…...
安装nscd及glibc包冲突降级【centos7】
安装nscd及glibc包冲突降级【centos7】 一、查看当前glibc版本二、查找可用的glibc版本三、备份系统和数据四、降级glibc五、验证降级是否成功六、解决其他依赖问题七、测试和验证八、考虑使用容器技术endl [08:41:07 rootcentos7 ~]# yum -y install nscd Loaded plugins: fas…...
Qt字符编码
目前字符编码有以下几种: 1、UTF-8 UTF-8编码是Unicode字符集的一种编码方式(CEF),其特点是使用变长字节数(即变长码元序列、变宽码元序列)来编码。一般是1到4个字节,当然,也可以更长。 2、UTF-16 UTF-16是Unicode字符编码五层次…...
Ubuntu用docker安装AWVS和Nessus(含破解)
Ubuntu安装AWVS(更多搜索:超详细Ubuntu用docker安装AWVS和Nessus) 首先安装docker,通过dockers镜像安装很方便,且很快;Docker及Docker-Compose-安装教程。 1.通过docker search awvs命令查看镜像; docker search awvs…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
ESP32读取DHT11温湿度数据
芯片:ESP32 环境:Arduino 一、安装DHT11传感器库 红框的库,别安装错了 二、代码 注意,DATA口要连接在D15上 #include "DHT.h" // 包含DHT库#define DHTPIN 15 // 定义DHT11数据引脚连接到ESP32的GPIO15 #define D…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
使用 SymPy 进行向量和矩阵的高级操作
在科学计算和工程领域,向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能,能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作,并通过具体…...
