当前位置: 首页 > news >正文

深度学习基础知识-全连接层

全连接(Fully Connected,简称 FC)层是深度学习神经网络中一种基本的层结构。它主要用于神经网络的最后几层,将高层特征映射到输出空间中。全连接层对数据的每个输入节点与每个输出节点进行连接,用于实现输入特征和输出结果之间的映射关系。以下是对全连接层的详细解释。

1. 全连接层的结构和原理

在全连接层中,每一个输入节点与每一个输出节点之间都有一条连接线。假设输入层有 n 个神经元,输出层有 m 个神经元,那么全连接层的连接总数为 n×m。这意味着所有的输入神经元都会影响到输出层的每一个神经元。

数学表示

对于全连接层,可以将其操作视为矩阵乘法加上偏置项的操作。假设输入特征向量 X 的大小为 (n,1),全连接层的权重矩阵 W 的大小为 (m,n),偏置向量 BBB 的大小为 (m,1),则全连接层的输出 Y 可表示为:

  • 权重矩阵 W:全连接层中每一个神经元都和前一层的每一个神经元相连接,这些连接的权重形成一个矩阵 W。它是神经网络的可训练参数。
  • 偏置向量 B:每个输出神经元都会有一个独立的偏置项,用来调整输出的整体水平,类似于线性回归中的截距。
激活函数

通常,经过全连接层的输出会传入一个激活函数(例如 ReLU、Sigmoid 或 Softmax 等),以引入非线性。这样可以提高网络的表达能力,使其能够拟合复杂的函数关系。

2. 全连接层的用途

全连接层在深度学习中主要用于以下几个场景:

  • 分类任务:在分类模型的输出层,全连接层的输出维度通常等于类别数。通过 Softmax 激活函数可以得到每个类别的概率分布。
  • 特征融合:在卷积神经网络(CNN)中,全连接层用于将提取的特征进行全局融合。CNN 的卷积层和池化层提取了局部特征,而全连接层能整合这些特征,用于更全面的决策。
  • 生成输出:在生成模型中(如生成对抗网络的判别器部分),全连接层用于生成图像、文本等数据的最后输出。

3. 全连接层的优缺点

优点
  • 表达能力强:全连接层由于每个节点间都相互连接,具有很强的特征表达能力。
  • 通用性高:几乎可以应用于任意结构的神经网络中,尤其是最后几层,适用于各种输出。
缺点
  • 参数量大:由于每个节点彼此相连,尤其是输入维度较高时,会产生非常多的参数,导致内存需求较大。
  • 冗余连接:全连接层会连接输入层的每一个神经元,可能会引入不必要的连接,从而影响模型的泛化能力。
  • 计算量大:全连接层的权重矩阵计算复杂度高,尤其对于大型网络和数据量较大的应用来说,计算开销较高。

4. 全连接层与卷积层的区别

  • 连接方式:全连接层中的每个神经元连接到前一层的每一个神经元,而卷积层只连接局部的神经元,进行局部特征提取。
  • 参数共享:卷积层中的卷积核是共享的,参数数量较少,而全连接层参数量大。
  • 空间信息:卷积层会保留输入的空间信息,适合处理图像数据;全连接层将所有输入“展平”,因此会丢失空间结构信息。

5. 如何减少全连接层的参数量

由于全连接层参数量大,占用内存多且容易导致过拟合,因此可以通过以下方法减少参数量:

  • Dropout:在训练时随机丢弃一部分神经元,防止过拟合,并减少计算量。
  • 参数共享:减少一些不必要的连接,尤其是输入特征较高维度时。
  • 使用更少的全连接层:在一些任务中,可以通过减少全连接层的数量来减少参数量。
  • 结合卷积层:在 CNN 网络中,将特征提取的主要工作交给卷积层,全连接层只用于最后的少量决策。

6. 示例代码

import torch
import torch.nn as nn
import torch.optim as optim# 定义一个全连接神经网络
class FCNN(nn.Module):def __init__(self):super(FCNN, self).__init__()self.fc1 = nn.Linear(784, 128)    # 全连接层,将输入展平到128维self.fc2 = nn.Linear(128, 64)     # 全连接层,输出64维self.fc3 = nn.Linear(64, 10)      # 全连接层,输出10维(用于分类)def forward(self, x):x = x.view(-1, 784)               # 将输入展平为 (batch_size, 784)x = torch.relu(self.fc1(x))       # 使用ReLU激活函数x = torch.relu(self.fc2(x))       # 使用ReLU激活函数x = torch.softmax(self.fc3(x), dim=1)  # 使用Softmax激活函数return x# 实例化模型
model = FCNN()# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 打印模型结构
print(model)# 示例训练步骤(假设已经有输入数据和标签)
# 假设输入数据 x 的大小为 (batch_size, 1, 28, 28),标签 y 的大小为 (batch_size,)
# 输入数据为28x28大小图像,并在批量训练模式下# 训练一个 epoch
for epoch in range(1):  # 这里只示例一个 epoch# 假设输入数据和标签x = torch.randn(32, 1, 28, 28)  # 随机生成一个批次的数据y = torch.randint(0, 10, (32,)) # 随机生成对应的标签# 前向传播outputs = model(x)loss = criterion(outputs, y)# 反向传播与优化optimizer.zero_grad()loss.backward()optimizer.step()print(f'Epoch [{epoch+1}], Loss: {loss.item():.4f}')

相关文章:

深度学习基础知识-全连接层

全连接(Fully Connected,简称 FC)层是深度学习神经网络中一种基本的层结构。它主要用于神经网络的最后几层,将高层特征映射到输出空间中。全连接层对数据的每个输入节点与每个输出节点进行连接,用于实现输入特征和输出…...

ffmpeg 提取mp4文件中的音频文件并保存

要从一个 MP4 文件中提取音频并保存为单独的音频文件,可以使用 ffmpeg 工具。以下是一个简单的命令示例: 命令格式 ffmpeg -i input.mp4 -vn -acodec copy output.mp3 参数解释 -i input.mp4: 指定输入文件为 input.mp4。 -vn: 禁用视频流&#xff0…...

【MySQL 保姆级教学】 复合查询--超级详细(10)

复合查询 1. 复合查询的作用2. 创建将进行操作的表2.1 员工表 emp2.2 部门表 dept2.3 薪资等级表 3. 基本查询回顾4. 多表查询4.1 多表查询的定义4.2 笛卡尔积4.3 内连接 inner join4.4 交叉连接 cross join4.5 左外连接 left join4.6 右外连接 right join4.7 自连接 5. 子查询…...

ONLYOFFICE:数字化办公的创新解决方案与高效协作平台

目录 前言—— 关于 ONLYOFFICE 桌面编辑器 1.首页介绍 2.电子表格 功能介绍 适用场景 3.ONLYOFFICE 在线Word功能 4.ONLYOFFICE 在线PPT功能 5.共同办公室 6.探索其他 总结 前言—— 在数字化办公的时代,传统的办公软件常常让人感到束缚与低效。而 ONLY…...

编译Kernel时遇到“error: ‘linux/compiler_types.h‘ file not found“的解决方法

问题描述: 在下载了一份安卓13项目的代码后进行make bootimage编译时遇到了下面编译报错: In file included from /home/bspuser/scode/kernel/msm-4.19/include/uapi/linux/stat.h:5: In file included from /home/bspuser/scode/kernel/msm-4.19/inc…...

开发之翼:划时代的原生鸿蒙应用市场开发者服务

前言 随着"纯血鸿蒙" HarmonyOS NEXT在原生鸿蒙之夜的正式发布,鸿蒙生态正以前所未有的速度蓬勃发展。据知已有超过15000个鸿蒙原生应用和元服务上架,覆盖18个行业,通用办公应用覆盖全国3800万多家企业。原生鸿蒙操作系统降低了接…...

代码随想录一刷——1.两数之和

当我们需要查询一个元素是否出现过&#xff0c;或者一个元素是否在集合里的时候&#xff0c;就要第一时间想到哈希法。 C&#xff1a; unordered_map class Solution { public: vector<int> twoSum(vector<int>& nums, int target) { unordered_map<int…...

vue自定义组件实现v-model双向数据绑定

一、Vue2 实现自定义组件双向数据绑定 ① v-model 实现双向数据绑定 在vue2中&#xff0c;子组件上使用v-model的值默认绑定到子组件的props.value属性上&#xff0c;由于子组件不能改变父组件传来的属性&#xff0c;所以需要通过$emit触发事件使得父组件中数据的变化&#xf…...

excel指定单元格输入相同的值,比如给D1~D10000输入现在的值

注意&#xff0c;一点不用用WPS&#xff0c;不然运行宏是会报&#xff1a;Droiact-Module1,第1行等Λ列语法错误: Unexpected identifier 步骤 1&#xff0c;altF11打开宏 2&#xff0c;输入脚本 3&#xff0c;点击运行按钮 成功后会看看到...

中国最强乳企伊利,三个季度净赚超百亿

伊利三季度的业绩完全超出了市场预期。 在一个飞天茅台都在不断跌价的消费趋势里&#xff0c;伊利三季度扣非净利润的同比增幅达到13.4%。大部分机构和投资者&#xff0c;都没料到伊利这一次的表现如此强悍。这一次&#xff0c;伊利在“大气层”。 并且&#xff0c;伊利前三季…...

SpringBoot源码解析(二):启动流程之引导上下文DefaultBootstrapContext

SpringBoot源码系列文章 SpringBoot源码解析(一)&#xff1a;启动流程之SpringApplication构造方法 SpringBoot源码解析(二)&#xff1a;启动流程之引导上下文DefaultBootstrapContext 目录 前言一、入口二、DefaultBootstrapContext1、BootstrapRegistry接口2、BootstrapCon…...

配置elk插件安全访问elk前台页面

编辑els配置文件vim elasticsearch.yml,添加以下配置文件 用elk用户&#xff0c;启动els服务 关闭防火墙&#xff0c;查看els启动是否成功&#xff0c;通过是否启动java进程来判断 或者通过查看是否启动9200和9300端口来判断是否启动 交互模式启动密码配置文件interactive表示交…...

[操作系统作业]页面置换算法实现(C++)

&#x1f493;博主csdn个人主页&#xff1a;小小unicorn ⏩专栏分类&#xff1a;linux &#x1f69a;代码仓库&#xff1a;小小unicorn的代码仓库&#x1f69a; &#x1f339;&#x1f339;&#x1f339;关注我带你学习编程知识 目录 必做题代码分析&#xff08;重点以时间统计…...

前端技术月刊-2024.11

本月技术月刊聚焦于前端技术的最新发展和业务实践。业界资讯部分&#xff0c;React Native 0.76 版本发布&#xff0c;带来全新架构&#xff1b;Deno 2.0 和 Node.js 23 版本更新&#xff0c;推动 JavaScript 生态进步&#xff1b;Flutter 团队规模缩减&#xff0c;引发社区关注…...

搜索引擎语法大全(Google、bing、baidu)

搜索引擎语法大全 搜索引擎语法通常指的是在搜索引擎中使用特定的运算符和语法来优化搜索结果。 提高搜索精度&#xff1a;使用特定的语法可以帮助用户更精确地找到相关信息&#xff0c;避免无关结果。例如&#xff0c;通过使用引号搜索确切短语&#xff0c;可以确保搜索结果包…...

java设计模式之行为型模式(11种)

行为型模式 行为型模式用于描述程序在运行时复杂的流程控制&#xff0c;即描述多个类或对象之间怎样相互协作共同完成单个对象都无法单独完成的任务&#xff0c;它涉及算法与对象间职责的分配。 行为型模式分为类行为模式和对象型模式&#xff0c;前者采用继承机制来在类间分派…...

微服务系列一:基础拆分实践

目录 前言 一、认识微服务 1.1 单体架构 VS 微服务架构 1.2 微服务的集大成者&#xff1a;SpringCloud 1.3 微服务拆分原则 1.4 微服务拆分方式 二、微服务拆分入门步骤 &#xff1a;以拆分商品模块为例 三、服务注册订阅与远程调用&#xff1a;以拆分购物车为例 3.1 …...

leetcode 1470.重新排列数组

1.题目要求: 2.题目代码: class Solution { public:vector<int> shuffle(vector<int>& nums, int n) {vector<int> x_array(nums.begin(),nums.begin() n);vector<int> y_array(nums.begin() n,nums.end());int x_index 0;int y_index 0;for…...

windows在两台机器上测试 MySQL 集群实现实时备份

在两台机器上测试 MySQL 集群实现实时备份的基本步骤&#xff1a; 一、环境准备 机器配置 确保两台机器&#xff08;假设为服务器 A 和服务器 B&#xff09;能够互相通信&#xff0c;例如它们在同一个局域网内&#xff0c;并且开放了 MySQL 通信所需的端口&#xff08;默认是 …...

点晴模切ERP系统助力模切企业转型升级之路

随着我国制造业规模不断扩大&#xff0c;中国制造业已经从高速扩张转向深入挖潜的关键阶段。数字化转型不仅有助于提升企业的生产效率和管理水平&#xff0c;还能有效应对市场竞争&#xff0c;实现可持续发展。在数字化转型的过程中&#xff0c;企业资源规划&#xff08;ERP&am…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析

这门怎么题库答案不全啊日 来简单学一下子来 一、选择题&#xff08;可多选&#xff09; 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘&#xff1a;专注于发现数据中…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求&#xff0c;本次涉及的主要是收费汇聚交换机的配置&#xff0c;浪潮网络设备在高速项目很少&#xff0c;通…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板&#xff08;STM32F103RBT6&#xff09;通过I2C驱动ICM20948九轴传感器&#xff0c;实现姿态解算&#xff0c;并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化&#xff0c;适合嵌入式及物联网开发者。在基础驱动上新增…...