CodeQL学习笔记(5)-CodeQL for Java(AST、元数据、调用图)
最近在学习CodeQL,对于CodeQL就不介绍了,目前网上一搜一大把。本系列是学习CodeQL的个人学习笔记,根据个人知识库笔记修改整理而来的,分享出来共同学习。个人觉得QL的语法比较反人类,至少与目前主流的这些OOP语言相比,还是有一定难度的。与现在网上的大多数所谓CodeQL教程不同,本系列基于官方文档和情景实例,包含大量的个人理解、思考和延伸,直入主题,只切要害,几乎没有废话,并且坚持用从每一个实例中学习总结归纳,再到实例中验证。希望能给各位一点不一样的见解和思路。当然,也正是如此必定会包含一定的错误,希望各位大佬能在评论区留言指正。
为了更好的阅读体验,请访问个人博客
CodeQL学习笔记(1)
CodeQL学习笔记(2)
CodeQL学习笔记(3)
CodeQL学习笔记(4)
2. AST节点
AST中节点的成分,主要两类:
- Stmt:语句(Statement)
- Expr:表达式(Expression)
这两个类中也提供了一些成员谓词:
- Expr.getAChildExpr 返回一个当前表达式的子表达式
- Stmt.getAChild 返回直接嵌套在给定语句中的语句或者表达式
- Expr.getParent and Stmt.getParent 返回一个AST节点的父节点
返回return stmt中的表达式:
import java
from Expr e
where e.getParent() instanceof ReturnStmt
select e
返回If stmt中的表达式:
import javafrom Stmt s
where s.getParent() instanceof IfStmt
select s
这样会将if语句的then和else都找到。
返回所有方法体中的语句:
import java
from Stmt s
where s.getParent() instanceof Method
select s
Method-Stmt-Expr
CodeQL提供了两个类:ExprParent 和 StmtExpr
来表示Expr和Stmt的父节点
3. 元数据
这里主要介绍针对Java中的Annotion注释
包、引用类型、字段、方法、构造函数和局部变量声明 具有超类 Annotatable,因此他们都具有getAnAnnotation方法
import javafrom Constructor c
select c.getAnAnnotation()
以上例子能够找到所有结构体的注释(抑制警告或将代码标记为已弃用的示例)
例如下面这个例子,能找到所有注释为@Deprecated的构造函数
import java
from Constructor cs, Annotation at, AnnotationType attp
where cs.getAnAnnotation() = at andat.getType() = attp andattp.hasQualifiedName("java.lang", "Deprecated")
select at
4. 指标
在前期学习中不涉及
5. 调用图
用来表示函数或构造函数的调用关系。
Callable表示可以被调用的代码单元,包括方法(函数)和构造函数。
Call表示一次调用的表达式。比如一次方法调用a.foo()、new 表达式new MyClass(),以及通过 this 或 super 的显式构造函数调用。
通过Call.getCallee()谓词找到某个调用表达式所调用的方法或构造函数。如果我们想找出所有对方法 println 的调用,可以编写如下查询:
import javafrom Call c, Method m
where m = c.getCallee() andm.hasName("println")
select c
- Call c 表示一个调用表达式,Method m 表示一个方法。
- c.getCallee() 获取调用表达式 c 所调用的方法或构造函数,这里我们用 m = c.getCallee() 来确保该调用表达式的目标是方法
- m.hasName(“println”) 用于过滤出名字为 println 的方法。
这个查询的输出结果就是程序中所有调用 println 方法的地方。
此外,还可以通过Callable.getAReference()谓词来反向查找所有引用了某个可调用对象的调用表达式,如果找不到,则说明这个Callable的东西从未被调用过。如下ql查询就能找到所有未被调用的方法或构造函数
import javafrom Callable c
where not exists(c.getAReference())
select c
相关文章:
CodeQL学习笔记(5)-CodeQL for Java(AST、元数据、调用图)
最近在学习CodeQL,对于CodeQL就不介绍了,目前网上一搜一大把。本系列是学习CodeQL的个人学习笔记,根据个人知识库笔记修改整理而来的,分享出来共同学习。个人觉得QL的语法比较反人类,至少与目前主流的这些OOP语言相比&…...
服装品牌零售业态融合中的创新发展:以开源 AI 智能名片 S2B2C 商城小程序为视角
摘要:本文以服装品牌零售业态融合为背景,探讨信息流优化和资金流创新的重要作用,并结合开源 AI 智能名片 S2B2C 商城小程序,分析其如何进一步推动服装品牌在零售领域的发展,提高运营效率和用户体验,实现商业…...
前端将网页转换为pdf并支持下载与上传
1.pdf下载 handleExport() {const fixedH document.getElementById("fixed-h");const pageOne document.getElementById("mix-print-box-one");const pageTwo document.getElementById("mix-print-box-two");fixedH.style.height 30vh;pageO…...
Android 依赖统一配置管理(Version Catalogs)
最近升级了Android Studio版本到Koala Feature Drop | 2024.1.2,新建项目后发现项目配置又有变化,默认开始使用了一个名叫 Gradle 版本目录的东西,当然也可以称之为依赖统一配置管理,一开始还有点陌生,但是经过一番了解…...
如何为数据看板产品接入实时行情接口并展示行情
在金融科技领域,实时数据是分析和决策的关键因素。通过AllTick的实时行情API,您可以轻松将实时市场数据集成到数据看板产品中,为用户提供丰富的市场洞察。本文将详细介绍如何使用AllTick API,通过WebSocket协议接收并展示实时市场…...
数据结构 C/C++(实验一:线性表)
(大家好,今天分享的是数据结构的相关知识,大家可以在评论区进行互动答疑哦~加油!💕) 目录 提要:实验题目 一、实验目的 二、实验内容及要求 三、算法思想 实验1 实验2 四、源程序及注释 …...
使用WebStorm开发Vue3项目
记录一下使用WebStorm开发Vu3项目时的配置 现在WebStorm可以个人免费使用啦!🤩 基本配置 打包工具:Vite 前端框架:ElementPlus 开发语言:Vue3、TypeScript、Sass 代码检查:ESLint、Prettier IDE…...
Linux高阶——1103——Signal信号机制
1、信号机制 在linux和unix系统下,如果想要处置(挂起,结束)进程,可以使用信号,经典消息机制,所以进程包括系统进程都是利用信号处置进程的 kill -l——查看所有系统支持的信号 1-31号信号——Unix经典信号ÿ…...
如何编写STM32的定时器程序
编写STM32的定时器程序通常涉及以下步骤: 1. 选择定时器和时钟配置 首先,你需要选择一个可用的定时器(TIM),并配置其时钟源。时钟源可以是内部时钟或外部时钟,通常通过RCC(Reset and Clock Con…...
【C++】C++的单例模式、跟踪内存分配的简单方法
二十四、C的单例模式、跟踪内存分配的简单方法 1、C的单例模式 本小标题不是讨论C的语言特性,而是一种设计模式,用于确保一个类在任何情况下都只有一个实例,并提供一个全局访问点来获取这个实例。即C的单例模式。这种模式常用于资源管理&…...
构建一个导航栏web
<!DOCTYPE html> <html><head><meta charset"utf-8"><title></title><style>*{margin: 0;padding: 0;}#menu{background-color:purple;width: 100px;height: 50px;}.item{float: left;/* 浮动标签可以让块标签,…...
【Linux】Linux安全与密钥登录指南
在使用Linux服务器时,确保服务器的安全至关重要。本文将为你介绍一些关键的Linux安全措施,包括开启密钥登录、查看登录日志、限制登录IP以及查看系统中能够登录的账号。以下内容适合小白用户,通过简单的操作就能有效提升服务器的安全性。 目录…...
数据采集之scrapy框架
本博文使用基本框架完成搜房网或者其他网站的数据爬取(重点理解 scrapy 框架的构建过程,使用回调函数,完成数据采集和数据处理) 包结构目录如下图所示: 主要代码: (sfw.py) # -*- …...
ReactPress—基于React的免费开源博客CMS内容管理系统
ReactPress Github项目地址:https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议,感谢Star。 {int sum 0;…...
期权交易策略 v0.1
一.概述 1.参考 <期权波动率与定价> 2.期权价格 标的现价100元,到期日价格可能情况如下。 价格 80 90 100 110 120 概率 20% 20% 20% 20% 20% 持有标的时,期望收益为0.如果持有100的看涨期权,忽略期权费,期望收益为(100-100)*0.2…...
pytorch学习:矩阵分解:奇异值分解(SVD分解)
前言 矩阵分解(Matrix Decomposition)是将一个矩阵分解成多个矩阵的乘积的过程,这种分解方法在计算、机器学习和线性代数中有广泛应用。不同的分解方式可以简化计算、揭示矩阵的内在结构或提高算法的效率。 奇异值分解 奇异值分解…...
接口测试用例设计的关键步骤与技巧解析!
简介 接口测试在需求分析完成之后,即可设计对应的接口测试用例,然后根据用例进行接口测试。接口测试用例的设计也需要用到黑盒测试用例设计方法,和测试流程与理论章节的功能测试用例设计的方法类似,设计过程中还需要增加与接口特…...
CSS画icon图标系列(一)
目录 前言: 一、向右箭头 1.原理: 2.代码实现 3.结果展示: 二、钟表 1.原理: 2.代码展示: 3.最终效果: 三、小手机 1.原理: 2.代码展示: 3.最后效果: 四、结…...
接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
如何在看板中有效管理突发紧急任务
在看板中有效管理突发紧急任务需要:设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP(Work-in-Progress)弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中,设立专门的紧急任务通道尤为重要,这能…...
srs linux
下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935,SRS管理页面端口是8080,可…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
【Oracle】分区表
个人主页:Guiat 归属专栏:Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
