当前位置: 首页 > news >正文

机器学习3_支持向量机_线性不可分——MOOC

线性不可分的情况

如果训练样本是线性不可分的,那么上一节问题的是无解的,即不存在 \omega 和 b 满足上面所有N个限制条件。

对于线性不可分的情况,需要适当放松限制条件,使得问题有解。

放松限制条件的基本思路:

\Rightarrow 对每个训练样本及标签 \left ( X_i,Y_i \right )

\Rightarrow 设置松弛变量(slack variable)\delta _i

对于线性不可分情况,需适当放松限制条件

限制条件改写:y_i\left ( \omega ^Tx_i+b \right )\geq 1-\delta _i,(i=1\sim N)

改造后的支持向量机优化版本

最小化:\frac{1}{2}\left \| \omega \right \|^2+C\Sigma _{i=1}^N\delta _i  或  \frac{1}{2}\left \| \omega \right \|^2+C\Sigma _{i=1}^N\delta _i^2

限制条件:

(1)\delta _i\geq 0,\left ( i=1\sim N \right )

(2)y_i\left ( \omega ^TX_i+b \right )\geq 1-\delta _i,\left ( i=1\sim N \right )

  • 以前的目标函数只需要最小化  \frac{1}{2}\left \| \omega \right \|^2 现在的目标函数增加了一项  所有 \delta _i 的和。
  • 比例因子 C\Rightarrow  平衡两项

比例因子 C 是人为设定的。

人为事先设定的参数叫做算法的超参数(Hyper Parameter)

实际中:不断变化 C 的值 \Rightarrow 同时测试算法的识别率 \Rightarrow 选取超参数 C

一个算法中,选取的超参数 C 越多,意味着算法需要手动调整优化的地方也就越多,这样算法的自动性也会降低。

支持向量机是超参数很少的算法模型。

超参数很多的算法模型,如人工神经网络、卷积神经网络等。

在线性不可分情况下应用支持向量机

取目标函数:\frac{1}{2}\left \| \omega \right \|^2+C\Sigma _{i=1}^N\delta _i,C=10000

C=10000 是为了超平面和线性可分情况保持基本一致

以下是训练数据以及解出的分类面的展示

可以看到这个分类面分开大多数的圆圈和叉,只在一个训练样本上存在分类的错误。

有了线性不可分情况下的支持向量机算法

如图,这个解分错了将近一半的样本,这个解远远不能让人满意。

问题在于我们的算法模型是线性的。也就是,我们假设分开两类的函数是直线或者超平面,我们是在一组直线和超平面中选择最合适分开这两类数据的直线或者超平面。但线性模型的表现力是不够的。

在下图这个例子中,可以看到能够分开这两类的是某种曲面,例如这个椭圆,而不是直线。

因此,我们只有想办法扩大可选函数的范围,使它超越线性,才有可能应对各种复杂的线性不可分的情况。


低维到高维的映射

支持向量机在扩大可选函数范围方面独树一帜。

其他算法,如人工神经网络、决策树等,采用的是直接产生更多可选函数的方式。

例如上图,在人工网络中,通过多层非线性函数的组合能够产生类似于椭圆这样的曲线,从而分开这幅图中的圆圈和叉。

而支持向量机却不是直接产生这样的函数,而是通过将特征空间由低维映射到高维,然后在高维的特征空间当中用线性超平面对数据进行分类。

X_1X_2 是图中的❌,X_3X_4 是图中的⭕️

这个例子是线性不可分的

如果我们构造一个二维到五维到映射 \varphi \left ( x \right ) 

\varphi \left ( x \right ): x=\begin{bmatrix} a\\ b \end{bmatrix}\rightarrow \varphi \left ( x \right )=\begin{bmatrix} a^2\\ b^2\\ a\\ b\\ ab \end{bmatrix}

按照这个映射,可以解出X_1X_2 、X_3X_4

\varphi \left ( X_1 \right )=\begin{bmatrix} 0\\ 0\\ 0\\ 0\\ 0 \end{bmatrix}     \varphi \left ( X_2 \right )=\begin{bmatrix} 1\\ 1\\ 1\\ 1\\ 1 \end{bmatrix}     \varphi \left ( X_3 \right )=\begin{bmatrix} 1\\ 0\\ 1\\ 0\\ 0 \end{bmatrix}     \varphi \left ( X_4 \right )=\begin{bmatrix} 0\\ 1\\ 0\\ 1\\ 0\end{bmatrix}

当映射变成五维时\varphi \left ( X_1 \right )\varphi \left ( X_2 \right )\varphi \left ( X_3 \right )\varphi \left ( X_4 \right )  线性可分

设:

\omega =\begin{bmatrix} -1\\ -1\\ -1\\ -1\\ 6 \end{bmatrix}

b=1

可以算出

\omega ^T\varphi \left (X_1\right )+b = 1\geqslant 0                  \omega ^T\varphi \left (X_2\right )+b = 3\geqslant 0

\omega ^T\varphi \left (X_3\right )+b =- 1< 0               \omega ^T\varphi \left (X_4\right )+b = -1< 0

由于X_1X_2 是同一类,X_3X_4 是同一类

人为二维到五维到映射 \varphi \left ( X \right )线性不可分的数据集 \Rightarrow 线性可分的数据集

假设:

在一个M维空间上随机取N个训练样本,随机的对每个训练样本赋予标签 +1 或 -1

假设:

这些训练样本线性可分的概率为 P\left ( M \right )

当 M 趋于无穷大时,P\left ( M \right )=1

即,当我们增加特征空间的维度 M 的时候,超平面待估计的参数 \left ( \omega ,b \right ) 的维度也会增加。也就是整个算法模型的自由度会增加。

这个定理告诉我们,将训练样本由低维映射到高维 \Rightarrow 增大线性可分的概率。

相关文章:

机器学习3_支持向量机_线性不可分——MOOC

线性不可分的情况 如果训练样本是线性不可分的&#xff0c;那么上一节问题的是无解的&#xff0c;即不存在 和 满足上面所有N个限制条件。 对于线性不可分的情况&#xff0c;需要适当放松限制条件&#xff0c;使得问题有解。 放松限制条件的基本思路&#xff1a; 对每个训…...

bash: git: command not found

在windows上重新安装Git之后&#xff0c;遇到cmd可以使用git命令&#xff0c;但是git bash中使用的git命令的时候&#xff0c;会提示&#xff1a; $ git bash: git: command not found 解决办法 找到用户目录下的.bash_profile和.bashrc文件&#xff0c;编辑打开&#xff0c;找…...

大模型LLama3!!!Ollama下载、部署和应用(保姆级详细教程)

首先呢&#xff0c;大家在网站先下载ollama软件 这就和anaconda和python是一样的 废话不多说 直接上链接&#xff1a;Download Ollama on Windows 三个系统都支持 注意&#xff1a; 这里的Models&#xff0c;就是在上面&#xff0c;大家点开之后&#xff0c;里面有很多模型…...

ReactPress系列—NestJS 服务端开发流程简介

ReactPress Github项目地址&#xff1a;https://github.com/fecommunity/reactpress 欢迎提出宝贵的建议&#xff0c;感谢Star。 NestJS 服务端开发流程简介 NestJS 是一个用于构建高效、可靠和可扩展的服务器端应用程序的框架。它使用 TypeScript&#xff08;但也支持纯 Java…...

Maven 下载配置 详解 我的学习笔记

Maven 下载配置 详解 我的学习笔记 一、Maven 简介二、maven安装配置三、maven基本使用四、idea配置mavenidea配置maven环境maven坐标idea创建maven项目配置Maven-Helper插件 五、依赖管理 一、Maven 简介 Apache Maven 是一个项目管理和构建工具&#xff0c;它基于项目对象模型…...

【学术精选】SCI期刊《Electronics》特刊“New Challenges in Remote Sensing Image Processing“

英文名称&#xff1a;New Challenges in Remote Sensing Image Processing 中文名称&#xff1a;"遥感图像处理的新挑战"特刊 期刊介绍 “New Challenges in Remote Sensing Image Processing”特刊隶属于《Electronics》期刊&#xff0c;聚焦遥感图像处理领域快速…...

卷积神经网络——pytorch与paddle实现卷积神经网络

卷积神经网络——pytorch与paddle实现卷积神经网络 本文将深入探讨卷积神经网络的理论基础&#xff0c;并通过PyTorch和PaddlePaddle两个深度学习框架来展示如何实现卷积神经网络模型。我们将首先介绍卷积神经网络、图像处理的基本概念&#xff0c;这些理论基础是理解和实现卷…...

云平台虚拟机运维笔记整理,使用libvirt创建和管理虚拟机,以及开启虚拟机嵌套,虚拟磁盘扩容,物理磁盘扩容等等

云平台虚拟机运维笔记整理,使用libvirt创建和管理虚拟机,以及开启虚拟机嵌套,虚拟磁盘扩容,物理磁盘扩容等等。 掌握和使用qemu和libvirt,分别使用它们创建一个cirros虚拟机,并配置好网络。 宿主机node0的系统为ubuntu16,IP为192.168.56.200。 qemu和libvirt简介 QEMU…...

最佳实践:如何实现函数参数之间的TS类型相依赖和自动推断

引入 最近在开发一款极致优雅的前端状态管理库AutoStore时碰到这样一个问题。 拟实现Field组件&#xff0c;该组件相关类型简化代码如下&#xff1a; type Field (props:{validate,render:(props:{value,isValid}) })该组件&#xff0c;具有validate和render两个属性: 其中…...

Linux基础指令1

好久没写博客了&#xff0c;这次我将重新做人&#xff0c;每星期都更&#xff0c;做不到的话直接倒立洗头。最近在学Linux&#xff0c;感觉很厉害的样子&#xff0c;先浅学一下再弄数据结构去。 Linux的基本操作是通过指令来执行的&#xff0c;所以我们先来学习下指令。 1.简…...

软件设计师:排序算法总结

一、直接插入 排序方式&#xff1a;从第一个数开始&#xff0c;拿两个数比较&#xff0c;把后面一位跟前面的数比较&#xff0c;把较小的数放在前面一位 二、希尔 排序方式&#xff1a;按“增量序列&#xff08;步长&#xff09;”分组比较&#xff0c;组内元素比较交换 假设…...

「Mac畅玩鸿蒙与硬件25」UI互动应用篇2 - 计时器应用实现

本篇将带领你实现一个实用的计时器应用&#xff0c;用户可以启动、暂停或重置计时器。该项目将涉及时间控制、状态管理以及按钮交互&#xff0c;是掌握鸿蒙应用开发的重要步骤。 关键词 UI互动应用时间控制状态管理用户交互 一、功能说明 在这个计时器应用中&#xff0c;用户…...

计算机专业开题报告写法,该怎么写好?

不会写开题报告&#xff0c;或者想要一些论文模版的&#xff0c;欢迎评论&#xff0c;会第一时间给大家。 题报告是计算机专业大学毕业生在开展毕业设计或论文研究前&#xff0c;对研究课题进行详细介绍和计划的重要环节。作为开题者对科研课题的一种文字说明&#xff0c;开题…...

Vue(JavaScript)读取csv表格并求某一列之和(大浮点数处理: decimal.js)

文章目录 想要读这个表格&#xff0c;并且求第二列所有价格的和方法一&#xff1a;通过添加文件输入元素上传csv完整&#xff08;正确&#xff09;代码之前的错误部分因为价格是小数&#xff0c;所以下面的代码出错。如果把parseFloat改成parseInt&#xff0c;那么求和没有意义…...

Pyraformer复现心得

Pyraformer复现心得 引用 Liu, Shizhan, et al. “Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting.” International conference on learning representations. 2021. 代码部分 def long_forecast(self, x_enc, x_m…...

成绩排序c++

说明 给出了班里某门课程的成绩单&#xff0c;请你按成绩从高到低对成绩单排序输出&#xff0c;如果有相同分数则名字字典序小的在前。 输入格式 第一行为nn(0<n<200<n<20)&#xff0c;表示班里的学生数目; 接下来的nn行&#xff0c;每行为每个学生的名字和他的…...

人脸检测之MTCNN算法网络结构

MTCNN&#xff08;Multi-task Cascaded Convolutional Networks&#xff09;是一种用于人脸检测和关键点检测的深度学习模型&#xff0c;特别适合在复杂背景下识别出多尺度的人脸。它通过多任务学习来实现人脸检测和人脸关键点定位&#xff08;如眼睛、鼻子、嘴巴的位置&#x…...

蓝桥杯顺子日期(填空题)

题目&#xff1a;小明特别喜欢顺子。顺子指的就是连续的三个数字&#xff1a;123、456 等。顺子日期指的就是在日期的 yyyymmdd 表示法中&#xff0c;存在任意连续的三位数是一个顺子的日期。例如 20220123 就是一个顺子日期&#xff0c;因为它出现了一个顺子&#xff1a;123&a…...

Java云HIS医院管理系统源码 病案管理、医保业务、门诊、住院、电子病历编辑

云HIS系统优势 &#xff08;1&#xff09;客户/用户角度 无需安装&#xff0c;登录即用 多终端同步&#xff0c;轻松应对工作环境转换 系统使用简单、易上手&#xff0c;信息展示主次分明、重点突出 极致降低用户操作负担&#xff1a;关联功能集中、减少跳转&#xff0c;键盘快…...

【C++的vector、list、stack、queue用法简单介绍】

【知识预告】 vector的介绍及使用list的介绍及使用list与vector的对比stack的介绍和使用queue的介绍和使用priority_queue的介绍和使用 1 vector的介绍及使用 1.1 vector的介绍 vector是表示可变大小数组的序列容器和数组类似&#xff0c;vector也采用连续存储空间来存储元…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

PL0语法,分析器实现!

简介 PL/0 是一种简单的编程语言,通常用于教学编译原理。它的语法结构清晰,功能包括常量定义、变量声明、过程(子程序)定义以及基本的控制结构(如条件语句和循环语句)。 PL/0 语法规范 PL/0 是一种教学用的小型编程语言,由 Niklaus Wirth 设计,用于展示编译原理的核…...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Redis的发布订阅模式与专业的 MQ(如 Kafka, RabbitMQ)相比,优缺点是什么?适用于哪些场景?

Redis 的发布订阅&#xff08;Pub/Sub&#xff09;模式与专业的 MQ&#xff08;Message Queue&#xff09;如 Kafka、RabbitMQ 进行比较&#xff0c;核心的权衡点在于&#xff1a;简单与速度 vs. 可靠与功能。 下面我们详细展开对比。 Redis Pub/Sub 的核心特点 它是一个发后…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

SQL慢可能是触发了ring buffer

简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...